高考数学函数的技巧 高考数学函数的技巧与方法

高考动态 2024-11-10 09:54:41

高中数学函数教学的方法

函数的性质包括单调性、奇偶性以及周期性。

高中数学函数教学的方法【1】

高考数学函数的技巧 高考数学函数的技巧与方法高考数学函数的技巧 高考数学函数的技巧与方法


高考数学函数的技巧 高考数学函数的技巧与方法


高考数学函数的技巧 高考数学函数的技巧与方法


8.空间向量及其加法、减法与数乘; 9.空间向量的坐标表示;

【摘要】针对初中高中数学函数教学的现状,探索如何让学生充分参与到函数教学课堂中,如何调动学生学习函数的积极性,以达到良好的函数教学效果.尤其高中函数数学,正是高中学生由简单数学逐渐向难度较大过渡阶段.作为一名高中数学教师,关键在于如何调动高中学生在数学函数课堂上的积极性与主动性,如何启发学生的数学思维,调动学生学习函数的兴趣度,帮助学生自觉和主动地参与函数教学的课堂活动.

【】高中数学;函数教学;教学方法;情景教学;案例教学;创新思维

数学思想是对数学事实、概念和理论的本质认识,是数学知识的高度概括.数学方法是数学思想在数学认识活动中的具体反映和体现,是处理探索解决数学问题、实现数学思想的手段和工具.因此,要求教师必须具备较高而灵活的高中数学函数的教学技巧.随着高中数学课程不断改革与素质教育的实施,教学方法的探索与创新,数学教学中要积极学生参与课堂,让学生在实践中去感受函数,丰富学生的情感体验,逐步形成正确的良好数学学习行为习惯.

函数是高中数学教学的核心内容,在解决很多数学问题时几乎都要用到函数这一工具,函数的教学在于启发学生的思维,为数理化的学习打下基础,逐渐在解决生活中的问题时建立起数学建模的思想. 可以看出高中函数教学在数学学习中的重要,为以后解决问题建立数学思维奠定基础.

一、高中数学函数教学方法的探究

(一)情景教学

现代多媒体的发展已经普及,在教师课堂上已经成为不可或缺的一部分,多媒体教学是现代教学主要工具,而中学生的思维以浅性思维为主,依据学生的个性需求、利用多媒体的特点,去调动学生的积极性,营造情境,有利于创造浓厚课堂氛围,使学生对所学函数知识产生学习愿望,不仅可以调动学生的学习兴趣,而且可以吸引学生的注意力,激发学生的想象力,大大地提高了学生学习的积极性和主动性,从而带来了良好的教学效果.

(二)案例教学

高中数学函数教学不仅仅局限于使学生掌握基本的函数知识,而要拓展培养学生思考、解决并实际运用知识的数学能力.因此,要求数学教师在教学别注意对函数教学的案例引入与启发.通过案例的教学方式,让学生和教师处于相对平等的教与学的地位,使学生更能积极接受相关知识,营造一种积极的氛围.教师教学案例方式,可以扩大学生接受知识的兴趣,很好地将理论知识与实践有效结合.

在日常的数学函数授课过程中,教师传道授业解惑,积极用自己的知识去武装每一名学生的函数头脑,使他们能够进入一种积极的学习状态.如已知一个矩形的周长是60 m,一边长是L m,写出这个矩形的面积S(m2)与这个矩形的一边长L之间的函数关系式;或者比较直观案例,如已知圆的面积是S cm2,圆的半径是R cm,写出圆的面积S与半径R之间的函数关系式.这些函数案例都非常容易地把二次函数思维教学引入课堂之中.

(三)创新数学思维的锻炼

函数和方程思想是中学数学重要的思想方法之一,在不等式教学中巧妙地融合函数与方程的思想解题,使学生于潜移默化中克服思维定式,领会不等式、方程与函数之间的转化,激发学生思维的灵活性.高中数学函数教学要与函数与方程(不等式)有效的结合,使学生体会到函数、方程、不等式的统一关系,进一步体现出新教材中数形结合的思想,使学生体会到数学知识之间的连续性.可以看出函数与方程、函数与不等式密不可分,紧密联系.如利用kx+b=0或ax2+bx+c=0可以求函数与x轴的交点坐标问题,利用Δ与0的关系可以判定二次函数与x轴的交点个数等.具体案例为:

若直线y=2x+b与x轴的交点坐标是(2,0),则关于x的方程2x+b=0的解即x的值是多少?

高中数学教学需要学生具有综合性思维,而不是简单浅性思维,这需要高中数学教师不断创新数学教学方式以逐渐培养学生的数学综合思维,要学生从开始就要树立函数本身的思维要求,结合当下新课程改革提出的素质新要求,必须提高学生应用数学函数的能力,使学生不仅掌握扎实的数学函数理论知识,而且具有实际应用数学的能力,这就要求教师教学出发点要创新,学生的思维才能形成,这样高中数学函数知识在以后的数学知识学习中可以轻松应对.

二、结语

数学函数知识贯穿于高中数学学习的始终,这需要学生从接触函数知识就要产生兴趣,关键在于教师的与创新.文章针对高中数学教学方法的探究,通过对函数教学方式的研究,提出了情景教学和案例教学的方法,以对高中数学教学效果具有一定作用.此外,任何数学知识都是一个体系,是一个有机整体,不是孤立的,这就要求教师创新学生思维锻炼,如函数教学时函数、不等式和方程必须相互联系,这也是高考数学考试的重点,这就需要教师必须加强学生的数学综合性思维的养成.

【参考文献】

[1]吴兰珍.高中数学函数教学渗透数学思想方法浅探[J].广西教育学院学报,2004(5).

[2]邱强生.新课改下高中数学函数教学浅谈[J].校外教育,2012(4).

高中数学函数教学方法【2】

摘要:新课程标准中明确提出教学中要加强学生对基本概念和基本思想的理解与掌握,对一些核心概念和基本思想要贯穿高中数学教学的始终,帮助学生加深对数学知识的理解。

函数既然是数学教学的.基础模块,其基本性质基本概念的教学理应受到重视。

教师在学生牢牢掌握基础知识的同时,应该以函数为基础工具,努力开展其他数学模块的教学。

:高中数学;函数;教学方法

1.把握函数基本性质,理解函数核心概念

高中数学二次函数教学对于学生而言,的确是一个难点。

就函数概念而言包括定义、定义域、值域、反函数等。

1.1 教学初步,认识函数概念与性质。

数学函数概念的提出,应该结合教学实际,提出问题、创设情境。

通过例举与概念相符、直观性较强的例子,让学生在学习抽象的函数概念时,能够形成较为感性的认识。

在以往的教学中,课堂教学方法虽然能很好地界定函数概念的内涵与外延,可是由于函数本身过于抽象,函数教学初步中,学生对函数基本概念的认识过于简单。

比如,函数基本三要素: 定义域、值域、对应法则的理解。

定义域是函数自变量的取值范围; 对应法则则是函数最直接的发现方式。

1.2 教学深入, 理解函数概念与性质。

在挖掘函数概念与性质的基础上理解概念和性质是对已经认知的概念的发展与完善。

新课程标准中要求学生要体验数学概念与性质的产生过程,理解与掌握的基础上能够真正运用其概念与性质。

函数教学中,函数单调性与周期性的研究是函数课堂教学一直涉及的问题。

比如指对数函数的单调性教学中,要根据函数的底数的范围( 0,1) 或者是( 1,+ ∞ ) 来判断其单调性,还有函数的单调性则要根据函数图像的拐点来划分单调区间。

二次函数的三种基本形式:1: 一 般 式:y=ax2+bx+c(a ≠ 0,a,b,c 为常数 ), 则称 y 为 x 的二次函数。

顶点坐标(-b/2a,4ac-b2/4a );2:顶点式:y=a(x-h)2+k 或y=a(x+m)2+k,顶点坐标为(h,k)或(-m,k);3:交点式(与 x 轴):y=a(x-x1)(x-x2) 重要概念: a,b,c 为常数,a ≠ 0,且 a 决定二次函数图象的开口方向,a>0 时,开口向上,a<0 时,开口向下。

②:设f(x+1)= x2-4x+1,求 f(x)这是个复合函数问题,求对应法则。

一般有两种方法:解法 1:把所给表达式 x+1 作为一个整体进行配方:f(x+1)=x2-4x+1=(x+1)2-6(x+1)+6, 再 用 x 替 换 x+1 得f(x)= x2-6x+6解法 2:换元法:这是常用的方法对一般函数都适用。

令t=x+1,则 x=t-1∴f(t)=(t-1)2- 4(t-1)+1=t2-6t+6 从 而 ?(x)= x2-6x+6。

这样处理后对二次函数的定义就有了较清晰的认识了。

2.紧扣函数主导思想,解放单一解题模式

2.1 数形结合,巧妙解题。

数学解题过程中,会涉及到一道题目有多种解题方法的现象。

特别是一些关于参数的问题,可以从几何学角度来考虑。

数形结合思想是数学教学的重要思想之一,"以形助数,以数解形"的思想能够使抽象的题目变得直观化、简单化。

如例题: 如果函数 f( x) = | 4x - x2| + a 的函数与 x 轴有 4 个不同交点,求参数 a的取值范围。

如果用数形结合的函数思想来解决该问题会有意想不到的效果,观察上式可知,函数的图像是由二次函数经过翻折变换,再平移而得,则本题可看作 y = - a 与 y = |4x - x2| 的图像相交公共点的个数即可讨论 a 的范围。

2.2 分类讨论,化繁为简。

凡是数学结论,其必有使其成立的条件,数学方法的使用也没有完全的性,也必有其适用范围。

将繁复的理解过程分解为几个类别,再按照不同情况进行讨论研究这就是数学教学中的分类讨论思想。

面对结果不明问题或者参数问题都可以运用分类讨论思想。

一方面分类讨论思想可以将复杂问题分解成简单的小问题,另一方面也可避免漏解,从而提高学生解题能力与严谨的数学素养。

3.结束语

函数虽然是高中数学教学中的重难点,但是并非是不可攻克的。

只要掌握正确的教学方法,让学生认识函数、了解函数进而喜欢函数和应用函数。

函数作为一项重要的工具,将会为学生解决很多问题,数理化中遇到的很多问题,都可以用函数的方法解决。

当学生在其他学科学习中,发现函数的用处,会切身体会到函数的用处,从而自主自觉的用心学好函数。

函数的学习能够帮助学生建立起初步的建模思想,这是以后学生在深造的过程中需要具备的重要的解决问题的思想。

在高中时期学好数学也是为日后深造打好基础。

参考文献

[1] 王呼. 高中函数教学研究[D].西北师范大学,2006.

[2] 张久鹏. 新课改下高中函数教学研究[D].苏州大学,2010.

[3] 常莪. 高中函数教学研究与实践[D].云南师范大学,2009.

高考数学 解析几何 和函数与导数 解题技巧

1高中数学必修方法

建议你将这两块的知识的各大市的试卷上的问题做一个专题的整理,把题目摘抄下来先逐一解决,然后再对比归纳出方法和一些经验!这样可以对两块问题有一个整体的把握!如,圆锥曲线中的焦点问题定义解题的意识是否形成

建议同学在做几何时,用坐标法,思维简单,但要头脑清晰,提高运算速度就能很快算出来

函数与导数一二问一般比较简单,不要纠结于一个题目。平时多总结各题型的解题技巧,做题时想的就广泛一些,具体还要靠自己。

平常时做练习的时候就要养成先自己做一遍,然后再去校对,校对完又自己再重新做一遍,一来加深记忆,二来规范自己的答题模式,再有,自己要多练多点总结才能将一般性的答题解题规律熟悉,考起试来就轻松好多

解析几何对于过焦点的线段问题可以用极坐标法,即用第二cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a定义,即用该线段与坐标轴夹角做参量。其他的基本套路,如点法要熟悉。比较天星的试题调研,里边有关于各知识模块的方法归纳。 话说有的省的数学解几就是很难。 做卷子并不一定要非把所有题做出来。一般情况下,能有130多也就比较好了。

高考数学必考题型及答题技巧是什么

通过猜想、测量的方法,直接观察或得出结果

高中数学是比较难的,想要学好高中数学,必须认真听讲,认真做题,我整理了高考数学必考题型和答题技巧,来看一下!

高考数学必考题型是什么

题型一

运用同三角函数关系、诱导公式、和、、倍、半等公式进行化简求值类。

运用三角函数性质解题,通常考查正弦、余弦函数的单调性、周期性、最值、对称轴及对称中心。

题型三

题型四已知三角形三边a,b,c,半周长p,则S=√[p(p-a)(p-b)(p-c)](海伦公式)(p=(a+b+c)/2)

数列的通向公式的求法。

高考数学答题技巧有哪些

1、函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。

2、如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;

3、面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是……;

4、选择与填空中出现不等式的题目,优选特殊值法;

5、求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;

6、恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;

7、圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;

高三数学求函数零点的方法

排除选项法

问题1,要求方程解的个数,我们通常采用转化为两个函数图像交点的个数,注意,画图像题看交点个数图一定要画的标准,函数,先不看,将里面的函数图像变换:x轴上方图像不变,下方的关于x轴对称;而抛物线只有保留y轴右侧图像就行了;两函数图像交点的个数就是要求的解的个数;

6.二次函数 这个初中的重点 要是生疏再把书拿出来看看

问题3,小问,即令方程f(x)=0的判别式=0即可;至于第二小问,首先令判别式>0,再利用韦达定理把两根之和表示出来,因为对称轴的横坐标

高三函数复习方法技巧

大型考试的那个难题可用四个字概括——防不胜防。这不是正常人做的题目,正常人也别指望在这个题上能够有多大的收获。因此高考时,不必费力去做一题,但绝不是说这个难题就不能得分。你应该有什么心态呢?反正这个题,我也不想做你,那我还怕你吗?无知者无畏,你一不怕它,反而就有勇气了。我也不要求多得分,能得个三四分就行了。可能你突然发现这个题,解出来比较难,但要想得三四分还是比较容易的。我在平常训练学生的时候,有一句话就是“不会也能得3分”。

高三是个压力大的时期,每位学子都要经历

a 的还可以决定开口大小 , a 的越大开口就越小 , a 的越小开口就越大。

作为学生,高考是我们的目标,数学是150分的科目,学好它,必须要经过函数这一个大关

复习函数,一定先要知道它的三要义四性,也就是定义域,值域,解析式;单调性,奇偶性,周期性,有界性

在复习时,千万不可以心急,要耐心地做相应的练习,巩固总结做题方法,把综合应用解决,要求我们做到对函数性质的熟悉,对解题思路的理顺,我们还要在模拟考试中把握做题心态,把错题一点一点改正,这就是我们要做到的复习

高中数学知识点最全总结

[3]关于高中数学教学方法的问题的探讨.

高考数学考试要取得好成绩,一方面要有扎实的基本功、熟练的计算能力,同时还要有一定的答题技巧。下面是我给大家带来的高中数学知识点最全 总结 ,以供大家参考!

数学重点知识点及答题技巧总结

一、高考数学必考题型 之 函数与导数

考查运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

函数与导数单调性

若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。需代入驻点左右两边的数值求导数正负判断单调性。

若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。

二、高考数学必考题型 之 几何

公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点在此平面内

公理2:过不在同一条直线上的三点,有且只有一个平面

公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线

公理4:平行于同一条直线的两条直线互相平行

定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补

如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行 “线面平行”

如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行“面面平行”

如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直“线面垂直”

如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直“面面垂直”

三、高考数学必考题型 之 不等式

对称性

传递性

加法单调性,即同向不等式可加性

乘法单调性

同向正值不等式可乘性

正值不等式可乘方

正值不等式可开方

倒数法则

四、高考数学必考题型 之 数列

(1)理解数列的概念,了解数列通项公式的意义了解递推公式是给出数列的一种 方法 ,并能根据递推公式写出数列的前几项。

(3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,井能解决简单的实际问题。

必背公式

1、一元二次方程的解

-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a

根与系数的关系x1+x2=-b/ax1x2=c/a注:韦达定理

判别式b2-4a=0注:方程有相等的两实根

b2-4ac>0注:方程有两个不相等的个实根

b2-4ac<0注:方程有共轭复数根

2、立体图形及平面图形的公式

圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标

圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0

抛物线标准方程y2=2pxy2=-2px2=2pyx2=-2py

直棱柱侧面积S=cxh斜棱柱侧面积S=c'xh

正棱锥侧面积S=1/2cxh'正棱台侧面积S=1/2(c+c')h'

圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pixr2

圆柱侧面积S=cxh=2pixh圆锥侧面积S=1/2xcxl=pixrxl

弧长公式l=axra是圆心角的弧度数r>0扇形面积公式s=1/2xlxr

锥体体积公式V=1/3xSxH圆锥体体积公式V=1/3xpixr2h

斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长

柱体体积公式V=sxh圆柱体V=pixr2h

3、图形周长、面积、体积公式

长方形的周长=(长+宽)×2

正方形的周长=边长×4

长方形的面积=长×宽

正方形的面积=边长×边长

三角形的面积

已知三角形底a,高h,则S=ah/2

和:(a+b+c)x(a+b-c)x1/4

已知三角形两边a,b,这两边夹角C,则S=absinC/2

设三角形三边分别为a、b、c,内切圆半径为r

则三角形面积=(★ 高中数学知识点归纳a+b+c)r/2

设三角形三边分别为a、b、c,外接圆半径为r

则三角形面积=abc/4r

常用的三角函数公式

两角和公式

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

高考应试技巧

技巧一提前进入“角色”

考前晚上要睡足八个小时,早晨吃些清淡的早餐,带齐一切高考用具,如笔、橡皮、作图工具、身分证、准考证等。

提前半小时到达高考考区,一方面可以消除新异,稳定情绪,从容进场,另一方面也留有时间提前进入“角色”让大脑开始简单的数学活动。回忆一下高考数学常用公式,有助于高考数学超常发挥。

技巧二情绪要自控

最易导致高考心理紧张、焦虑和恐惧的是入场后与答卷前的“临战”阶段,此间保持心态平衡的方法有三种

转移注意法:把注意力转移到对你感兴趣的事情上或滑稽事情的回忆中。

自我安慰法:如“我经过的考试多了,没什么了不起”等。

抑制思维法:闭目而坐,气贯丹田,四肢放松,深呼吸,慢吐气,如此进行到高考发卷时。

技巧三摸透“题情”

从高考数学卷面上获取最多的信息,为实施正确的解题策略作准备,顺利解答那些一眼看得出结论的简单选择或填空题,这样可以使紧张的情绪立即稳定,使高考数学能够超常发挥。

技巧四信心要充足,暗示靠自己

高考数学答卷中,见到简单题,要细心,莫忘乎所以,谨防“大意失荆州”。面对偏难的题,要耐心,不能急。

考试全程都要确定“人家会的我也会,人家不会的我也会”的必胜信念,使自己始终处于竞技状态

技巧五数学答题有先有后

1、答题应先易后难,先做简单的数学题,再做复杂的数学题;根据自己的实际情况,跳过实在没有思路的高考数学题,从易到难。

2、先高分后低分,在高考数学考试的后半段时要特别注重时间,如两道题都会做,先做高分题,后做低分题,对那些拿不下来的数学难题也就是高分题应“分段得分”,以增加在时间不足前提下的得到更多的分,这样在高考中就会增加数学超常发挥的几率。

高中数学知识点最全总结相关 文章 :

★ 高中数学基本知识点

★ 高一数学知识点全面总结

★ 高中数学知识点:椭圆方程式知识点总结

★ 高一数学考试基础知识点

★ 高中数学必修一三角函数知识点总结

★ 高中数学知识点:平面向量的公式的知识点总结

★ 高中数学全部知识点提纲整理

★ 人教版高中数学知识点总结

高考数学导数解题技巧

高考数学导数解题技巧

1.通过选择题和填空题,全面考查函数的基本概念,性质和图象。

3.从数学具有高度抽象性的特点出发,没有忽视对抽象函数的考查。

4.一些省市对函数应用题的考查是与导数的应用结合起来考查的。

5.涌现了一些函数新题型。

6.函数与方程的思想的作用不仅涉及与函数有关的试题,而且对于数列,不等式,解析几何等也需要用函数与方程思想作指导。

7.多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题。

8.求极值, 函数单调性,应用题,与三角函数或向量结合。

高研究函数的单调性问题是导数的一个主要应用,解决单调性、参数的范围等问题,需要解导函数不等式,这类问题常常涉及解含参数的不等式或含参数的不等式的恒成立、能成立、恰成立的求解。由于函数的表达式常常含有参数,所以在研究函数的单调性时要注意对参数的分类讨论和函数的定义域。考数学导数中档题是拿分点

1.单调性问题

2.极值问题

求函数y=f(x)的极值时,要特别注意f'(x0)=0只是函数在x=x0有极值的必要条件,只有当f'(x0)=0且在 _ 0 时,f'(x0)异号,才是函数y=f(x)有极值的充要条件,此外,当函数在x=x0处没有导数时, 在 x=x0处也可能有极值,例如函数 f(x)=|x|在x=0时没有导数,但是,在x=0处,函数f(x)=|x|有极小值。

还要注意的是, 函数在x=x0有极值,必须是x=x0是方程f'(x)=0的根,但不是二重根(或2k重根),此外,在确定极值点时,要注意,由f'(x)=0所求的驻点是否在函数的定义域内。

3.切线问题

曲线y=f(x)在x=x0处的切线方程为y-f(x0)=f'(x0)(x-x0),切线与曲线的综合,可以出现多种变化,在解题时,要抓住切线方程的建立,切线与曲线的位置关系展开推理,发展 理性思维 。关于切线方程问题有下列几点要注意:

(1)求切线方程时,要注意直线在某点相切还是切线过某点,因此在求切线方程时,除明确指出某点是切点之外,一定要设出切点,再求切线方程;

(2) 和曲线只有★ 高中数学知识点总结一个公共点的直线不一定是切线,反之,切线不一定和曲线只有一个公共点,因此,切线不一定在曲线的同侧,也可能有的切线穿过曲线;

(3) 两条曲线的公切线有两种可能,一种是有公共切点,这类公切线的特点是在切点的函数值相等,导数值相等;另一种是没有公共切点,这类公切线的特点是分别求出两条曲线的各自切线,这两条切线重合。

高考数学与函数解题技巧口诀是什么意思

判定定理:

内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。

复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。

函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;

正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;

求解2.在解答题的考查中,与函数有关的试题常常是以综合题的形式出现。非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,

奇母偶子偶函数,偶母非奇偶函数;图象象限内,函数增减看正负

精锐长宁天山数组为您解答

高中数学函数学习技巧

八、圆锥曲线(18课时,7个)

我也回想起我的高一时代

以前初中那些卷子 随便写写 最起码也是八十几啊

到了高一备受打击 次考试苦思冥想 才小上七十几

其实后来 再看那些题目 就觉得十分简单了

函数重在对这一章整体的把握

不知楼主同学是否把这章学完了?还没学完的话

首先得把书上的概念理解深刻 书上的题目一定咬全会做

然后这章算是高一上重中之重 所以咬做大量题 学会熟练 并要见多识广

还有一个就是 作题目时多画函数图像

大部分题目用图像法很容易看出

上面的比较空把

我正好高考复习

随便说点重点 这个还要仔细思考

1.如何判断两函数为同一函数(这个要熟练掌握函数定义 选择题经常会考)

2.求解析式的方法(配凑 换元 待定系数 赋值)一定要熟练掌握 若还有不明要向老师请教

3.分类讨论 这个式高中重点培养的思维模式

经常给你一个二次函数 例:mX^-6mx+12(^为平方)

这个要分m=0 m不等于0讨论 六、不等式(22课时,5个)这个切记

往往在做题时容易疏忽

4.求值域的方法(反函数 配方 换元 判别式 图像法)

还有个重要的模型x+x/1

并注意这些方法那些普遍通用 哪些是用时要注意条件的

5.单调性注意细心和熟练(多做)这个到不是很难

7.指数和对数函数这个以后再学把 也比较烦躁

呵呵 这个只是随便说说 关键在于勤学多问

希望我的一些小经验对你有些帮助把

高考数学中函数类的解答题的类型一解题技巧核心是什么?

7.二项式定理; 8.二项展开式的性质.

其实只要你多做多练多总结,就会触类旁通,所谓一法通万法通。首先,不要害怕题目,未知数的个数,这些往往都会使做题的人产生恐惧感,进而会有拒绝感。然后,读题目的时候默读几遍,特别是考试的时候,一道看似简单的数学题,往往答对率不是很高,因为总有一些暗坑在里面。读懂题目后,在草稿纸和化积上画图,图、模型是解决数学中函数的方法,因为在画图中往往会有一丝的灵感闪现,特别是一些特殊的值-1、0、1等等。会使你灵光一动。就是要熟悉求导、微积分、求和等等的公式。才能做起来得心应手。一句话,最重要的就是多练。在这短短的时间内,同时要放松一下自己的心态,不要被题目所恐吓,这很重要~

高考数学倒数第二道函数的题,解题技巧求高手指点。

高中阶段对二次函数定义是:从一个 A(定义域)到 B(值域)上的映射?:A → B,使按照大型的考试的要求,考前五分钟是发卷时间,考生填写准考证。这五分钟是不准做题的,但是这五分钟可以看题。我发现很多考生拿到试卷之后,就从个题开始看,我给大家的建议是,拿过这套卷子来,这五分钟是用来制定整个战略的关键时刻。之前没看到题目,你只是空想,当你看到题目以后,你得利用这五分钟迅速制定出整个考试的战略来。得 B 中的元素y=ax2+bx+c(a ≠ 0,a,b,c 为常数 ) 与 A 的元素 X 对应,记为?(x)= ax2+bx+c (a ≠ 0,a,b,c 为常数 ) 这里ax2+bx+c 表示对应法则,又表示定义域中的元素 X 在值域中的象,为了让学生掌握函数值的记号,我们可以作如下处理:

如果分三问,问是比较简单的。1,掌握导数的几何意义—用来求切线方程。2,掌握8个求导公式和四则运算3会复合函数求导,4会十字相乘法因式分解和求根公式,5会解含参数的一次,二次不等式。6会数轴标根法。7会求单调性和极值的一般步骤,8最重要的是————函数题上来就必须先求定义域。以上2—8条能解决所有求单调性的问题。9,要掌握二次函数根的分布问题,这是你解决二次函数恒成立的基础,也就是导数的第二问,还有变更主元法,参变分离法,10掌握求值域的方法,导数和圆锥曲线化简到往往是关于求值域的问题,11第二问不等式证明题,考构造法。12会点高中版本的高数

版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。