cosα·secα=1。
三角函数公式sec 三角函数公式sec和csc
三角函数公式sec 三角函数公式sec和csc
三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。
积化和公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
和化积公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
sec、csc、cot的三角函数公式是secx=1/(cosx)、cscx=1/(sinx)、cotx=1/(tanx)=(cosx)/(sinx)。
正弦函数:sinθ=y/r
余弦函数:cosθ=x/r
正切函数:tanθ=y/x
余切函数:cotθ=x/y
正割函数:secθ=r/x
余割函数:cscθ=r/y
同角三角函数
(1)平方关系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
(2)积的关系:
sinα=tanαcosα cosα=cotαsinα
tanα=sinαsecα cotα=cosαcscα
secα=tanαcscα cscα=secαcotα
如下:
cot中文是余切,cot=cos/sin。
sec是叫正割,sec=1/cos。
csc是叫余割,csc=1/sin。
一、cot(余切函数)
1、cot是三角函数里的余切三角函数符号,此符号在以前写作ctg。
2、cot坐标系表示:cotθ=x/y,在三角函数中cotθ=cosθ/sinθ,当θ≠kπ,k∈Z时cotθ=1/tanθ (当θ=kπ,k∈Z时,cotθ不存在)。
二、sec(正割)
1、正割(Secant,sec)是三角函数的一种。
2、它的定义域不是整个实数集,值域是大于等于一的实数,它是周期函数,其小正周期为2π。
3、正割是三角函数的正函数(正弦、正切、正割、正矢)之一,所以在2kπ到2kπ+π/2的区间之间,函数是递增的,另外正割函数和余弦函数互为倒数。
三、csc
1、直角三角形斜边与某锐角对边的比,叫做该锐角的余割,用 csc(角)表示 。
2、一个角的顶点和该角终边上另一任意点间的距离除以后一个点的非零纵坐标所得之商,这个角的顶点与平面直角坐标系的原点重合,而其始边则与正X轴重合。
3、记作cscx,它与正弦比值表达式互为倒数,余割的函数图像为奇函数,且为周期函数。
相关信息:
三角函数是数学中属于初等函数中的超越函数的函数。它们的本质是任何角的与一个比值的的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。
三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。
sec在三角函数中表示正割
直角三角形斜边与某个锐角的邻边的比,叫做该锐角的正割,用 sec(角)表示 。
正割与余弦互为倒数,余割与正弦互为倒数。即:secθ=1/cosθ
在y=secθ中,以x的任一使secθ有意义的值与它对应的y值作为(x,y).在直角坐标系中作出的图形叫正割函数的图像,也叫正割曲线.
y=secθ的性质:
(1)定义域,θ不能取90度,270度,-90度,-270度等值; 即 θ ≠kπ+π/2 或 θ≠kπ-π/2 (k∈Z,且k≠0)
(2)值域,|secθ|≥1.即secθ≥1或secθ≤-1;
(3)y=secθ是偶函数,即sec(-θ)=secθ.图像对称于y轴;
(4)y=secθ是周期函数.周期为2kπ(k∈Z,且k≠0),小正周期T=2π.
是正割函数,是cos的倒数,并且sec^2=1+tan^2 。基本的就这些了,再有它的不定积分是ln|sec x+tan x|+C; 导数是sec x tan x 。图像见
sec在三角函数中表示正割
直角三角形斜边与某个锐角的邻边的比,叫做该锐角的正割,用
sec(角)表示
。正割与余弦互为倒数,余割与正弦互为倒数。即:secθ=1/cosθ
在y=secθ中,以x的任一使secθ有意义的值与它对应的y值作为(x,y).在直角坐标系中作出的图形叫正割函数的图像,也叫正割曲线.
y=secθ的性质:
(1)定义域,θ不能取90度,270度,-90度,-270度等值;
即θ
≠kπ+π/2
或θ≠kπ-π/2
(k∈z,且k≠0)
(2)值域,|secθ|≥1.即secθ≥1或secθ≤-1;
(3)y=secθ是偶函数,即sec(-θ)=secθ.图像对称于y轴;
(4)y=secθ是周期函数.周期为2kπ(k∈z,且k≠0),小正周期t=2π.
版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。