Ⅰ. 考核目标与要求
文科圆锥曲线高考考吗 文科生考不考圆锥曲线
文科圆锥曲线高考考吗 文科生考不考圆锥曲线
根据普通高等学校对新生文化素质的要求,依据中华2003年颁布的《普通高中课程方案(实验)》和《普通高中数学课程标准(实验)》的必修课程、选修课程系列1和系列4的内容,确定文史类高考数学科考试内容.
(2)了解函数模型(如指数函数、对数函数、幂函数、分段函数等在生活中普遍使用的函数模型)的广泛应用.知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列1和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能.
各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明.
对知识的要求依次是了解、理解、掌握三个层次.
1. 了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它.
这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等.
2. 理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识做正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别、讨论,具备利用所学知识解决简单问题的能力.
这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想象,比较、判别,初步应用等.
3. 掌握:要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决.
这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等.
二、能力要求
能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识.
1. 空间想象能力:能根据条件做出正确的图形,根据图形想象出直观形象;能正确地分析出图形中的基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质.
空间想象能力是对空间形式的观察、分析、抽象的能力,主要表现为识图、画图和对图形的想象能力.识图是指观察研究所给图形中几何元素之间的相互关系;画图是指将文字语言和符号语言转化为图形语言以及对图形添加辅助图形或对图形进行各种变换;对图形的想象主要包括有图想图和无图想图两种,是空间想象能力高层次的标志.
2. 抽象概括能力:抽象是指舍弃事物非本质的属性,揭示其本质的属性;概括是指把仅仅属于某一类对象的共同属性区分出来的思维过程.抽象和概括是相互联系的,没有抽象就不可能有概括,而概括必须在抽象的基础上得出某种观点或某个结论.
抽象概括能力是对具体的、生动的实例,经过分析提炼,发现研究对象的本质;从给定的大量信息材料中概括出一些结论,并能将其应用于解决问题或做出新的判断.
中学数学的推理论证能力是根据已知的事实和已获得的正确数学命题,论证某一数学命题真实性的初步的推理能力.
4. 运算求解能力:会根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件寻找与设计合理、简捷的运算途径,能根据要求对数据进行估计和近似计算.
运算求解能力是思维能力和运算技能的结合.运算包括对数字的计算、估值和近似计算,对式子的组合变形与分解变形,对几何图形各几何量的计算求解等.运算能力包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等一系列过程中的思维能力,也包括在实施运算过程中遇到障碍而调整运算的能力.
5. 数据处理能力:会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信息,并做出判断.
数据处理要是指针对研究对象的特殊性,选择合理的收集数据的方法,根据问题的具体情况,选择合适的统计方法整理数据,并构建模型对数据进行分析、推断,获得结论.
6. 应用意识:能综合应用所学数学知识、思想和方法解决问题,包括解决相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题;能应用相关的数学方法解决问题进而加以验证,并能用数学语言正确地表达和说明.应用的主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决.
7. 创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行的思考、探索和研究,提出解决问题的思路,创造性地解决问题.
创新意识是理性思维的高层次表现.对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强.
三、个性品质要求
个性品质是指考生个体的情感、态度和价值观.要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义.
要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神.
四、考查要求
数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识的纵向联系和横向联系,要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的框架结构.
3. 对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度以及进一步学习的潜能.
对能力的考查要全面,强调综合性、应用性,并要切合考生实际.对推理论证能力和抽象概括能力的考查贯穿于全卷,是考查的重点,强调其科学性、严谨性、抽象性;对空间想象能力的考查主要体现在对文字语言、符号语言及图形语言的互相转化上;对运算求解能力的考查主要是对算法和推理的考查,考查以代数运算为主;对数据处理能力的考查主要是考查运用概率统计的基本方法和思想解决实际问题的能力.
4. 对应用意识的考查主要采用解决应用问题的形式.命题时要坚持“贴近生活,背景公平,控制难度”的原则,试题设计要切合中学数学教学的实际和考生的年龄特点,并结合实践经验,使数学应用问题的难度符合考生的水平.
5. 对创新意识的考查是对高层次理性思维的考查.在考试中创设新颖的问题情境,构造有一定深度和广度的数学问题时,要注重问题的多样化,体现思维的发散性;精心设计考查数学主体内容,体现数学素质的试题;也要有反映数、形运动变化的试题以及研究型、探索型、开放型等类型的试题.
数学科的命题,在考查基础知识的基础上,注重对数学思想方法的考查,注重对数学能力的考查,展现数学的科学价值和人文价值,同时兼顾试题的基础性、综合性和应用性,重视试题间的层次性,合理调控综合程度,坚持多角度、多层次的考查,努力实现全面考查综合数学素养的要求.
Ⅱ.考试范围与要求
本部分包括必考内容和选考内容两部分.必考内容为《课程标准》的必修内容和选修系列1的内容;选考内容为《课程标准》的选修系列4的“坐标系与参数方程”“不等式选讲”2个专题.
必考内容
1. 的含义与表示
(1)了解的含义、元素与的属于关系.
2. 间的基本关系
(1)理解之间包含与相等的含义,能识别给定的子集.
(2)在具体情境中,了解全集与空集的含义.
3. 的基本运算
(1)理解两个的并集与交集的含义,会求两个简单的并集与交集.
(2)理解在给定中一个子集的补集的含义,会求给定子集的补集.
(3)能使用韦恩(Venn)图表达的关系及运算.
(二) 函数概念与基本初等函数Ⅰ(指数函数、对数函数、幂函数)
1. 函数
(2)在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.
(3)了解简单的分段函数,并能简单应用.
(4)理解函数的单调性、值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义.
(5)会运用函数图像理解和研究函数的性质.
2. 指数函数
(1)了解指数函数模型的实际背景.
(2)理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.
(3)理解指数函数的概念,理解指数函数的单调性,掌握指数函数图像通过的特殊点.
(4)知道指数函数是一类重要的函数模型.
3. 对数函数
(1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.
(2)理解对数函数的概念,理解对数函数的单调性,掌握对数函数图像通过的特殊点.
(3)知道对数函数是一类重要的函数模型.
4. 幂函数
(1)了解幂函数的概念.
5. 函数与方程
(1) 结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.
(2)根据具体函数的图像,能够用二分法求相应方程的近似解.
6. 函数模型及其应用
(1)了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义.
(三) 立体几何初步
1. 空间几何体
(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.
(2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二侧法画出它们的直观图.
(3)会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.
(4)会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不做严格要求).
(5)了解球、棱柱、棱锥、台的表面积和体积的计算公式.
2. 点、直线、平面之间的位置关系
(1)理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.
公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内.
公理2:过不在同一条直线上的三点,有且只有一个平面.
公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.
公理4:平行于同一条直线的两条直线互相平行.
定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.
(2)以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理.
理解以下判定定理.
如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.
如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.
如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.
理解以下性质定理,并能够证明.
如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直线平行.
如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.
垂直于同一个平面的两条直线平行.
如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.
(3)能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.
(四)平面解析几何初步
1. 直线与方程
(1)在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.
(2)理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.
(3)能根据两条直线的斜率判定这两条直线平行或垂直.
(4)掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.
(5)能用解方程组的方法求两条相交直线的交点坐标.
(6)掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.
2. 圆与方程
(1)掌握确定圆的几何要素,掌握圆的标准方程与一般方程.
(2)能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.
(4)初步了解用代数方法处理几何问题的思想.
3. 空间直角坐标系
(1)了解空间直角坐标系,会用空间直角坐标表示点的位置.
(2)会推导空间两点间的距离公式.
(五) 算法初步
1. 算法的含义、程序框图
(1)了解算法的含义,了解算法的思想.
(2)理解程序框图的三种基本逻辑结构:顺序、条件分支、循环.
理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义.
(六) 统计
1. 随机抽样
(1)理解随机抽样的必要性和重要性.
(2)会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.
2. 用样本估计总体
(1)了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.
(3)能从样本数据中提取基本的数字特征(如平均数、标准),并给出合理的解释.
(4)会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.
(5)会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.
3. 变量的相关性
(七) 概率
1. 与概率
(1)了解随机发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.
(2)了解两个互斥的概率加法公式.
2. 古典概型
(1)理解古典概型及其概率计算公式.
(2)会用列举法计算一些随机所含的基本数及发生的概率.
3. 随机数与几何概型
(1)了解随机数的意义,能运用模拟方法估计概率.
(2)了解几何概型的意义.
(八) 基本初等函数Ⅱ(三角函数)
1. 任意角的概念、弧度制
(1)了解任意角的概念.
(2)了解弧度制的概念,能进行弧度与角度的互化.
2. 三角函数
(1)理解任意角三角函数(正弦、余弦、正切)的定义.
(4)理解同角三角函数的基本关系式:
(6)了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.
(九) 平面向量
1. 平面向量的实际背景及基本概念
(3)理解向量的几何表示.
2. 向量的线性运算
(1)掌握向量加法、减法的运算,并理解其几何意义.
(2)掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.
(3)了解向量线性运算的性质及其几何意义.
3. 平面向量的基本定理及坐标表示
(2)掌握平面向量的正交分解及其坐标表示.
(3)会用坐标表示平面向量的加法、减法与数乘运算.
(4)理解用坐标表示的平面向量共线的条件.
4. 平面向量的数量积
(1)理解平面向量数量积的含义及其物理意义.
(2)了解平面向量的数量积与向量投影的关系.
(3)掌握数量积的坐标表达式,会进行平面向量数量积的运算.
(4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.
5. 向量的应用
(1)会用向量方法解决某些简单的平面几何问题.
(2)会用向量方法解决简单的力学问题与其他一些实际问题.
(十) 三角恒等变换
1. 和与的三角函数公式
(1)会用向量的数量积推导出两角的余弦公式.
(2)能利用两角的余弦公式导出两角的正弦、正切公式.
(3)能利用两角的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.
2. 简单的三角恒等变换
能运用上述公式进行简单的恒等变换(包括导出积化和、和化积、半角公式,但对这三组公式不要求记忆).
(十一)解三角形
1. 正弦定理和余弦定理
掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.
2. 应用
(十二)数列
1. 数列的概念和简单表示法
(1)了解数列的概念和几种简单的表示方法(列表、图像、通项公式).
(2)了解数列是自变量为正整数的一类函数.
2. 等数列、等比数列
(1)理解等数列、等比数列的概念.
(2)掌握等数列、等比数列的通项公式与前项和公式.
(3)能在具体的问题情境中识别数列的等关系或等比关系,并能用有关知识解决相应的问题.
(4)了解等数列与一次函数、等比数列与指数函数的关系.
(十三)不等式
1. 不等关系
了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.
2. 一元二次不等式
(1)会从实际情境中抽象出一元二次不等式模型.
(2)通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系.
(3)会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.
3. 二元一次不等式组与简单线性规划问题
(1)会从实际情境中抽象出二元一次不等式组.
(2)了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.
(3)会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.
(1)了解基本不等式的证明过程.
(十四)常用逻辑用语
1. 命题及其关系
(1)理解命题的概念.
(2)了解“若,则”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.
(3)理解必要条件、充分条件与充要条件的意义.
2. 简单的逻辑联结词
了解逻辑联结词“或”“且”“非”的含义.
3. 全称量词与存在量词
(1)理解全称量词与存在量词的意义.
(2)能正确地对含有一个量词的命题进行否定.
(十五)圆锥曲线与方程
(1)了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.
(3)了解双曲线、抛物线的定义、几何图形和标准方程,知道它们的简单几何性质.
(4)理解数形结合的思想.
(5)了解圆锥曲线的简单应用.
1. 导数概念及其几何意义
(1)了解导数概念的实际背景.
(2)理解导数的几何意义.
2. 导数的运算
3. 导数在研究函数中的应用
(1)了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).
(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的值、最小值(其中多项式函数一般不超过三次).
4. 生活中的优化问题.
会利用导数解决某些实际问题.
(十七)统计案例
了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题.
1. 性检验
了解性检验(只要求2×2列联表)的基本思想、方法及其简单应用.
2. 回归分析
(十八)推理与证明
1. 合情推理与演绎推理
(1)了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.
(2)了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理.
(3)了解合情推理和演绎推理之间的联系和异.
2. 直接证明与间接证明
(1)了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程、特点.
(2)了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点.
(十九)数系的扩充与复数的引入
1. 复数的概念
(1)理解复数的基本概念.
(2)理解复数相等的充要条件.
(3)了解复数的代数表示法及其几何意义.
2. 复数的四则运算
(1)会进行复数代数形式的四则运算.
(2)了解复数代数形式的加、减运算的几何意义.
(二十)框图
1. 流程图
(1)了解程序框图.
(2)了解工序流程图(即统筹图).
(3)能绘制简单实际问题的流程图,了解流程图在解决实际问题中的作用.
2. 结构图
(1)了解结构图.
(2)会运用结构图梳理已学过的知识,整理收集到的资料信息.
选考内容
(一)坐标系与参数方程
1. 坐标系
(1)理解坐标系的作用.
(2)了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.
(3)能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.
(4)能在极坐标系中给出简单图形的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义.
(5)了解柱坐标系、球坐标系中表示空间中点的位置的方法,并与空间直角坐标系中表示点的位置的方法相比较,了解它们的区别.
2. 参数方程
(1)了解参数方程,了解参数的意义.
(2)能选择适当的参数写出直线、圆和圆锥曲线的参数方程.
(3)了解平摆线、渐开线的生成过程,并能推导出它们的参数方程.
(4)了解其他摆线的生成过程,了解摆线在实际中的应用,了解摆线在表示行星运动轨道中的作用.
(二)不等式选讲
1. 理解的几何意义,并能利用含不等式的几何意义证明以下不等式:
5. 了解数学归纳法的原理及其使用范围,会用数学归纳法证明一些简单问题.
6. 会用数学归纳法证明伯努利不等式:
了解当n为大于1的实数时伯努利不等式也成立.
7. 会用上述不等式证明一些简单问题.能够利用平均值不等式、柯西不等式求一些特定函数的极值.
8.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.
祝考生们高考取得好成绩!
关于圆锥曲线类的题,问一般都是可以做出来的。但是第二问就不一定了。做第二问,首先应保证问已经作对。因为2问之间一般都是有联系的。第二问往往要用到问的标准方程。解联立方程式,一般老师会让我们记好多快速解答的公式,但我认为那样不太好。因为我当时上高中的时候曾经试验了哪种方法,椭圆、和双曲线的万一记混了,就没分了。所以,做这类题的时候,我认为还是认真一步一步解答,争取一次解答无误。这样要比记公式可靠。当然,你成绩相对来说还不错。做题应该是60-70分钟就可以做完。如果对自己解答仍不放心,可以换哪种方法检验,这样,更增加了的可靠性。因为用同种方法检验一个题,是很难检验出什么错误的。记公式的话,记双曲线和椭圆的快速公式就可,抛物线一般简单,所以以防记混,就不必记了。亲~~希望我的建议能给你帮助~~
三角形式的运算,须将辐角和模辨。利用棣莫弗公式,乘方开方极方便。记下,高考不容大意啊
数学已成为许多及地区的 教育 范畴中的一部分。它应用于不同领域中,包括科学、工程、医学、经济学和金融学等。这次我给大家整理了高三文科数学常考知识点,供大家阅读参考。
第二,平面向量与三角函数、三角变换及其应用。这一部分是高考的重点但不是难点,主要出一些基础题或中档题。高三文科数学常考知识点
一、导数的应用
确定函数在其确定的定义域内可导(通常为开区间),求出导函数在定义域内的零点,研究在零点左、右的函数的单调性,若左增,右减,则在该零点处,函数去极大值;若左边减少,右边增加,则该零点处函数取极小值。学习了如何用导数研究函数的最值之后,可以做一个有关导数和函数的综合题来检验下学习成果。
2.生活中常见的函数优化问题
1)费用、成本最省问题
3)面积、体积最(大)问题
二、推理与证明
1.归纳推理:归纳推理是 高二数学 的一个重点内容,其难点就是有部分结论得到一般结论,的 方法 是充分考虑部分结论提供的信息,从中发现一般规律;类比推理的难点是发现两类对象的相似特征,由其中一类对象的特征得出另一类对象的特征,的方法是利用已经掌握的数学知识,分析两类对象之间的关系,通过两类对象已知的相似特征得出所需要的相似特征。
2.类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。
三、不等式
对于含有参数的一元二次不等式解的讨论
1)二次项系数:如果二次项系数含有字母,要分二次项系数是正数、零和负数三种情况进行讨论。
高三文科数学知识点
虚数单位i一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。
对应复平面上点,原点与它连成箭。箭杆与X轴正向,所成便是辐角度。
箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。
代数运算的实质,有i多项式运算。i的正整数次慕,四个数值周期现。
一些重要的结论,熟记巧用得结果。虚实互化本领大,复数相等来转化。
利用方程思想解,注意整体代换术。几何运算图上看,加法平行四边形,
减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。
高三数学 知识点
一、、简易逻辑(14课时,8个)1.;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件.
三二、函数(30课时,12个)1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例.、数列(12课时,5个)1.数列;2.等数列及其通项公式;3.等数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式.
四、三角函数(46课时17个)1.角的概念的推广;2.弧度制;3.任意角的三角函数;4,单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式’7.两角和与的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16余弦定理;17斜三角形解法举例.
五、平面向量(12课时,8个)1.向量2.向量的加法与减法3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移.
六、不等式(22课时,5个)1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含的不等式.
七、直线和圆的方程(22课时,12个)1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题.9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程.
八、圆锥曲线(18课时,7个)1椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质.九、(B)直线、平面、简单何体(36课时,28个)1.平面及基本性质;2.平面图形直观图的画法;3.平面直线;4.直线和平面平行的判定与性质;5,直线和平面垂直的判与性质;6.三垂线定理及其逆定理;7.两个平面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示;10.空间向量的数量积;11.直线的方向向量;12.异面直线所成的角;13.异面直线的公垂线;14异面直线的距离;15.直线和平面垂直的性质;16.平面的法向量;17.点到平面的距离;18.直线和平面所成的角;19.向量在平面内的射影;20.平面与平面平行的性质;21.平行平面间的距离;22.二面角及其平面角;23.两个平面垂直的判定和性质;24.多面体;25.棱柱;26.棱锥;27.正多面体;28.球.
十一、概率(12课时,5个)1.随机的概率;2.等可能的概率;3.互斥有一个发生的概率;4.相互同时发生的概率;5.重复试验.选修Ⅱ(24个)
十二、概率与统计(14课时,6个)1.离散型随机变量的分布列;2.离散型随机变量的期望值和方;3.抽样方法;4.总体分布的估计;5.正态分布;6.线性回归.
十三、极限(12课时,6个)1.数学归纳法;2.数学归纳法应用举例;3.数列的极限;4.函数的极限;5.极限的四则运算;6.函数的连续性.
十四、导数(18课时,8个)1.导数的概念;2.导数的几何意义;3.几种常见函数的导数;4.两个函数的和、、积、商的导数;5.复合函数的导数;6.基本导数公式;7.利用导数研究函数的单调性和极值;8函数的值和最小值.
十五、复数(4课时,4个)1.复数的概念;2.复数的加法和减法;3.复数的乘法和除法补充高中数学有130个知识点,从前一份试卷要考查90个知识点,覆盖率达70%左右,而且把这一项作为衡量试卷成功与否的标准之一.这一传统近年被打破,取而代之的是关注思维,突出能力,重视思想方法和思维能力的考查.现在的我们学数学比前人幸福啊!!相信对你的学习会有帮助的,祝你成功!补充一试全国高中数学联赛的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即高考所规定的知识范围和方法,在方法的要求上略有提高,其中概率和微积分初步不考。二试1、平面几何基本要求:掌握初中数学竞赛大纲所确定的所有内容。补充要求:面积和面积方法。几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。几个重要的极值:到三角形三顶点距离之和最小的点--费马点。到三角形三顶点距离的平方和最小的点,重心。三角形内到三边距离之积的点,重心。几何不等式。简单的等周问题。了解下述定理:在周长一定的n边形的中,正n边形的面积。在周长一定的简单闭曲线的中,圆的面积。在面积一定的n边形的中,正n边形的周长最小。在面积一定的简单闭曲线的中,圆的周长最小。几何中的运动:反射、平移、旋转。复数方法、向量方法。平面凸集、凸包及应用。补充第二数学归纳法。递归,一阶、二阶递归,特征方程法。函数迭代,求n次迭代,简单的函数方程。n个变元的平均不等式,柯西不等式,排序不等式及应用。复数的指数形式,欧拉公式,棣莫佛定理,单位根,单位根的应用。圆排列,有重复的排列与组合,简单的组合恒等式。一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。简单的初等数论问题,除初中大纲中所包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数,费马小定理,欧拉函数,孙子定理,格点及其性质。3、立体几何多面角,多面角的性质。三面角、直三面角的基本性质。正多面体,欧拉定理。体积证法。截面,会作截面、表面展开图。4、平面解析几何直线的法线式,直线的极坐标方程,直线束及其应用。二元一次不等式表示的区域。三角形的面积公式。圆锥曲线的切线和法线。圆的幂和根轴。
高三数学常考知识点
导数:导数的意义-导数公式-导数应用(极值最值问题、曲线切线问题)
1、导数的定义:在点处的导数记作.
2.导数的几何物理意义:曲线在点处切线的斜率
①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。V=s/(t)表示即时速度。a=v/(t)表示加速度。
3.常见函数的导数公式:①;②;③;
⑤;⑥;⑦;⑧。
4.导数的四则运算法则:
5.导数的应用:
(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;
注意:如果已知为减函数求字母取值范围,那么不等式恒成立。
(2)求极值的步骤:
①求导数;
②求方程的根;
(3)求可导函数值与最小值的步骤:
ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。
数学的 学习方法
1、养成良好的学习数学习惯。 建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、作业、解决疑难、系统小结和课外学习几个方面。
2、及时了解、掌握常用的数学思想和方法,学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。
4、记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
高三文科数学常考知识点整理归纳相关 文章 :
★ 高三文科数学重点公式
★ 高三数学必考知识点
★ 高三年级文科数学学习方法总结
★ 高三文科数学方法
★ 高考数学必考重点知识大全
★ 高三数学复数知识点整理 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();
高考数学有几道大题,分别是考哪几个知识点 6题
1数列或三角函式
2概率与排列组合
3立体几何4圆锥曲线
5导数
6三选一,4-1几何证明选讲,4-4座标系与引数方程,4-5不等式选讲
高考数学的大题 涉及到6个考点分别圆锥曲线、导数、概率、数列、三角函式和立体几何。
2015浙江高考数学有几道题
8道选择
7道填空
5道解答题
高考数学理科考试一般考多少知识点,分别是什么?
必修一。函式两道小题,函式,导数一起一小题一大题
必修三。程式框图,一小题
必修四,必修五。解三角形,三角函式共两小题一大题。数列大小个一,不等式肯定一道小题,不知道boss题第三问会不会有
2-1,大小各一。2-2,复数一小题,导数和函式一起说了。2-3,二项式定理,排列组合,其他的各一小题,期望那个什么大题。
我们湖北的,应该不多的。
除了2-2,一些生可以不怎么管(复数还是要的!),2-1有些很难的地方(一般是补充的)可以无视,其他都不要忽视!
浙江省高考数学卷有几个选择,几个填空,几个大题,分值分别是多少?
选择10道,每道5分;填空7道,每道4分;解答题5道,共72分,第1、2、5小题14分,第3、4小题15分.
高考数不用记的,其实没技巧就是的技巧学知识点赋分比
高考数学各知识点分值分布
你看一下考试大纲,上面都有的
高考数学每道题的知识点分布
这好象没准确的吧!只有多做几次模拟,自己感受效果才好。我也是今年考的,数学,希望我们都考好!
高考数学大题重点在哪几章内容
第十五题 三角函式或者解三角形
第十六题 大部分情况是 立体几何③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;
第十七题 应用题
第十八题 函式题
第十九题 解析几何
第二十题 综合探究题(据说连出考卷的人,出题之前都不知道自己要出什么题目)
我就是文科生,现在已经大二了,高中数学学得还算是骄傲,给你点建议。首先,数学老师的课一定要全神贯注的听,做到完全吸收他讲过的内容。其次,做题做卷子遇到错题一定要整理,建立数学思维,尤其是将同类题归类,抄一遍题然后再根据自己听老师讲完之后按照自己的思路做一遍,保证完全理解题得思路。,定期把整理的错题拿出来,再做再回顾,找到漏掉的知识点。坚持,就一定有效果,而且数学思维和数学反应一定要建立好。
大题6个 三角 立几 概率 不等式 解几 压轴 各一个主要在做题,虽然不提倡,但是题海战术是最直接也是最简便的方法,做得多了,你就可以慢慢地猜到出题人的想法和他下一个问题是什么,也能找到其中的规律
步:做同一类性的题(比如:学三角函数就做三角函数同一类型)
第二步:做套题(比如:卷子)
第三步:主攻选择填空题,缩短做题时间(选择填空题拿分)
分数及格就行了,92分以上
文科的数学最主要把基础的分拿到,就好像一看就会做的,就要保证不要做错,然后不会的选择题和填空题就撞,大题的话就写你会的那几个步骤,步骤也是有分,错了一般不会扣太多~~~~~在100分左右吧,这样不会拉得厉害~~~~
掌握书的基础知识,熟练运用公式,做题时尽量将问题简单化,理清思路,高考时想不被拉分的话要考到100分左右
文科生数学90分就不会拉分了 学好数学主要就是会活用公式 再多做些题就可以了
90多分的话基础分时够了,应该提高训练难度,尝试完成每道习题,总结解题方法和规律,对树上的任何概念都能灵(2)会用基本不等式解决简单的(小)值问题.活运用
坚持每天半张数学卷,,,,要是高考卷,,,,,,我一朋友就坚持了一个学期,,高考数学134 注意1答题时的思路 2选择题正确率 3答题速度
一般会低些,,,,状态好的低5分,,,状态的就悲剧了,,,,,注意正确率!!!!
文科数学比较简单 1.熟记公式及其运用2.同时专门针对选择习题 就是说经过三次 次挨着挨着一个单元一个单元巩固 第二次当你公式运用成熟了 你就选择综合性质的套题 第三你只要又不懂的就问同学和老师 你在选择点有难度的套题联系一下就可以了饿 加油哈
文科的可能性会大一点,不过遇到简单的卷子就不会了。文科生学数学只要抓住老师说了,不懂的问懂,(错题本很有用哦)然后适量做题,就可以了。心态很重要
祝你高考顺利哦
你好,很1. 对数学基础知识的考查,既要全面又要突出重点.对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体.注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面.从学科的整体高度和思维价值的高度考虑问题,在知识网络的交汇点处设计试题,使对数学基础知识的考查达到必要的深度.高兴为你解答这个问题。
高考当中一般圆锥曲线大题,作为倒数第二道或者倒数道压轴大题。
我2)不等式对应方程的根:如果一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则根据这两个根的大小进行分类讨论,这时,两个根的大小关系就是分类标准,如果一元二次不等式对应的方程根不能通过因式分解的方法求出来,则根据方程的判别式进行分类讨论。通过不等式练习题能够帮助你更加熟练的运用不等式的知识点,例如用放缩法证明不等式这种技巧以及利用均值不等式求最值的九种技巧这样的解题思路需要再做题的过程中 总结 出来。们以新课标全国卷为例。
圆锥曲线大题出在第20题。
具体题目,问往往是基础知识的考察,即离心率,标准方程,不同圆锥曲线中a,b,c,的简单识别计算。难度较小。
第二问,我们一般叫做圆锥曲线和直线的位置关系。这是近些年来的主流考法。用代数的角度,解决几何问题。
圆锥曲线分作,椭圆,抛物线,双曲线,圆。高考当中出现的圆锥曲线,除了选填当中可能出现圆,大题当中,主要是椭圆,偶尔有抛物线,很少出现双曲线,不出现圆。希望可以帮到你
其实文理都有的 只是深度不一样 文科相比较简单一些 需要掌握的烧一下 像你提到的离心率那是文理都有的 而且是重点 而焦半径什么的大多只做课外补充 但是其实话说回来 如果你想获得文科数学高分 这些都应该掌握 成为你破题的一把钥匙
(2)理解平面向量的概念,理解两个向量相等的含义.理科文科都要学的。
文理都有的选修4-X,3本,一本一小题,只选一题做内容
不管是文科还是理科,基础都是函数与方程。。。。。。还有就是概率方面要重视。。。。。。外加一个立体几何。。。。。。解析几何基本都是方程的思想。。。。。。高三要想进入状态,就应先把函数的知识搞清楚,再学别的。函数的知识:基本初等函数的性质;函数的单调性,奇偶性,周期性都要十分清楚。弄清极值与最值的联系,区别与求法。一定要把函数与方程联系起来才能融汇贯通。
立体几何说实话,新课标都是向量法大部分还是写参数列方程,概率方面一定要注意排列组合的计算方法(好像有十种以上),都要掌握清楚才行,课本上的都是基本方法,想知道怎么做还要多多实践才行。。。。。。
书本上的知识只要把公式与定理看(2)掌握椭圆的定义、几何图形、标准方程及简单几何性质.了就行了,至于推导的(3)能用直线和圆的方程解决一些简单的问题.可以不看的。
建议将课本上的知识按照章节画一张“指南图”,上面都是章节的具体精简的内容,建议你先做一做本章节的习题(基础题),再把这张图画出来,记住,一定要(一) 做题之后画。每章都这么坚持,自然重点也就明晰了。。。。。。
一套高考真题就好,真的,都是一样的,知识点都不变,只变变题型。#^_^
1、是三角函数。一般考三角函数之间的转换关系,不会太难,近年来数学大题邮箱应用题方向靠拢,可能会以此作为基础。
2、立体几何,建系、设点、写坐标,函数和解析几何。都可以作为压轴题,位置不定。难度一般都很大。
3、函数。一般和不等式结合,(也是最难的一步)要学好放缩关系。函数体一般会分成三个小题,(为降低难度)一般为放缩求不等关系。解题时注意运用上一小题的提示。
4、解析几何。一般为圆锥曲线。抛物线和椭圆轮着来。无非就考一些定点、定直线、定角问题。
5、选择题12个 必有、立几、不等式,通常解几压轴比较难,填空4个、一个多选的有难度 其他的挺普通的,大题6个 三角、立几、概率、不等式、解几和压轴各一个。
,函数与导数。主要考查运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
第三,数列及其应用。这部分是高考的重点而且是难点,主要出一些综合题。
第四,不等式。主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。
第五,概率和统计。这部分和我们的生活联系比较大,属应用题。
第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。
第七,解析几何。是高考的难点,运算量大,一般含参数。
我先给你说山东数学怎样出题的。先出大题。一般是两个大学老师和一个中学老师出一个题。(大学的管命题,中学的管审题,防治难度过大)
个是三角函数,一般考三角函数之间的转换关系,不会太难,近年来数学大题邮箱应用题方向靠拢,可能会以此作为基础。
第二个是立体几何,建系、设点、写坐标,再把关系一代基本上一、知识要求就OK了。
第三题概率,就更简单了。无非就考求E之类的,弄清关系,别弄混就行。
第四题(近几年是向量)别看平时做向量很难,从近几年考题来看,向量问题都不难。掌握好方法就行。
第五题和第六题:函数和解析几何。都可以作为压轴题,位置不定。难度一般都很大。
解析几何:一般为圆锥曲线。抛物线和椭圆轮着来。无非就考一些定点、定直线、定角问题,平时多练多总结就好。
大题出完就看少哪些知识点,从少的钟抽出一些考选择和填空。
选择12个 必有 立几 不等式 通常解几压轴比较难
填空4个 一2. 基本算法语句个多选的有难度 其他的挺普通的
系统复习就好 3、注重学习效率
高二 学好基础知识最重要 另外 做到的好题及时总结啊~
选择12个 必有 立几 不等式 通常解几压轴比较难
填空4个 一个多选的有难度 其他的挺普通的
系统复习就好
每章节都涉及啊。都是知识点了。只要平时认真总结错题。就没问题
就看你是哪个省份的学生了;各省的情况是不一样的;
按题型在网上很好找的。分为圆锥曲线定义类、离心率的值或范围类、焦点三角形类、中点弦类、直线与圆锥曲线位置关系类、求最值问题等。我知道陕西2010年自主命题的数学文理科的距很小;只有两三个题有别,解答题都基本一样;其实在考纲上说的比较清楚:文科的考试内容较理科少了以下内容:
(1)立体几何:用空间向量解决空间角与距离的计算和论证;用空间向量判断或证明空间的平行与垂直关系;
(2)不等式:证明不等式的常用方法:分2)利润、收益问题析法,综合法;数学归纳法
(3)函数与导数:复合函数个求导与应用;
(4)概率与统计:离散随机变量的分布列,期望,方的计算;正态分布,误检验与分析等;
(5)排列与组合,
在解析几何方面,文理科的要求基本一样,好多省的解答题中文理是一样的;
只是从全国卷来看,对文科学生的运算与推理考察的要求稍微降低了一点点;知识点与内容要求完全一样;
在选秀里,理科增加了参数方程与极坐标的考察
不同的省份不一样,问你的老师
版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。