高考数学必过图_高考数学必考题

投档分数 2025-04-17 11:18:49

高考数学常考知识点整理大全

先做同科同类型的题目,思考比较集中,知识和方法的沟通比较容易,有利于提高单位时间的效益。高考题一般要求较快地进行“兴奋灶”的转移,而“先同后异”,可以避免“兴奋灶”过急、过频的跳跃,从而减轻大脑负担,保持有效精力。

数学是高中生学习的最重要科目之一,在高考知识点复习过程中非常重要,那么数学考哪些知识点?下面是我为大家整理的关于高考数学常考知识点,希望对您有所帮助。欢迎大家阅读参考学习!

高考数学必过图_高考数学必考题高考数学必过图_高考数学必考题


高考数学必过图_高考数学必考题


高考数学必过图_高考数学必考题


高考数学常考知识点

一、三角函数

1.周期函数:一般地,对于函数f(x),如果存在一个不为0的常数T使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期,把所有周期中存在的最小正数,叫做最小正周期三角函数属于高中数学中的重点内容,在高考理科数学中更是占据很重要的位置。

2.三角函数的图像:可以利用三角函数线用几何法作出,在度要求不高的情况下,常用五点法作图,要特别注意“五点”的取法。

3.三角函数的定义域:三角函数的定义域是研究其他一切性质的前提,求三角函数的定义域实际上就是解最简单的三角不等式,通常可用三角函数的图像或三角函数线来求解,注意数形结合思想的应用。

二、反三角函数主要是三个:

y=arcsin(x),定义域[-1,1] ,值域[-π/2,π/2]图象用红色线条;

y=arccos(x),定义域[-1,1] , 值域[0,π],图象用蓝色线条;

y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2),图象用绿色线条;

sin(arcsin x)=x,定义域[-1,1],值域 [-1,1] arcsin(-x)=-arcsinx

三、三角函数其他公式

arcsin(-x)=-arcsinx

arccos(-x)=π-arccosx

arctan(-x)=-arctanx

arccot(-x)=π-arccotx

arcsinx+arccosx=π/2=arctanx+arccotx

sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)

当x∈[—π/2,π/2]时,有arcsin(sinx)=x

当x∈[0,π],arccos(cosx)=x

x∈(—π/2,π/2),arctan(tanx)=x

x∈(0,π),arccot(cotx)=x

x〉0,arctanx=π/2-arctan1/x,arccotx类似

若(arctanx+arctany)∈(—π/2,π/2),则arctanx+arctany=arctan(x+y/1-xy)

四、三角函数与平面向量的综合问题

(1)巧妙“转化”--把以“向量的数量积、平面向量共线、平面向量垂直”“向量的线性运算”形式出现的条件还其本来面目,转化为“对应坐标乘积之间的关系”;

(2)巧挖“条件”--利用隐含条件”正弦函数、余弦函数、的有界性“,把不等式的恒成立问题转化为含参数ψ的方程,求出参数ψ的值,从而可求函数的解析式;

(3)活用”性质“--活用正弦函数与余弦函数的单调性、对称性、周期性、奇偶性,以及整体换元思想,即可求其对称轴与单调区间。

五、见三角函数“对称”问题,启用图象特征代数关系:(A≠0)

1.函数y=Asin(an+bn=(a+b)(an-1-an-2b+…+bn-1)(n为奇数)wx+φ)和函数y=Acos(wx+φ)的图象,关于过最值点且平行于y轴的直线分别成轴对称;

2.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于其中间零点分别成中心对称;

3.同样,利用图象也可以得到函数y=Atan(wx+φ)和函数y=Acot(wx+φ)的对称性质。

高中数学重点知识点

高中数学重点知识点讲解:直线的倾斜角

定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°

高中数学重点知识点讲解:直线的斜率

①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。在高中数学里直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。当时,。当时,;当时,不存在。

②过两点的直线的斜率公式:

注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

(2)k与P1、P2的顺序无关;

(3)以后高中数学涉及到求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

高中数学重点知识点讲解:直线方程

①点斜式:

直线斜率k,且过点

注意:高中数学在关于直线方程解法中,当直线的斜率为0°时,k=0,直线的方程是y=y1。当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。

②斜截式:,直线斜率为k,直线在y轴上的截距为b

③两点式:()直线两点,

④截矩式:

其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。

注意:○1各式的适用范围

○2特殊的方程如:平行于x轴的直线:

(b为常数);平行于y轴的直线:

(a为常数);

高考数学的答题顺序是什么

高考数学的答题顺序:先易后难

就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。

高考数学的答题顺序:先熟后生

通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的 方法 ,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。这样,在拿下熟题的同时,可以使思维流畅、超常发挥,达到拿下中题目的目的。

高考数学的答题顺序:先同后异

点击查看:高中数学知识点 总结 及复习资料

高考数学的答题顺序:先小后大

小题一般是信息量少、运算量小,易于把握,不要轻易放过,应争取在大题之前尽快解决,从而为解决大题赢得时间,创造一个宽松的心理基矗

高考数学的答题顺序:先点后面

近年的高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面6.先高后低。即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。

高考数学常考知识点整理大全相关 文章 :

★ 高考数学必考重点知识大全

★ 高三数学知识点考点总结大全

★ 高考数学常考知识点总结

★ 高考数学必考知识点考点2020大全

★ 高考数学知识点归纳整理

★ 高考数学必考考点2020大全总结

★ 高考数学知识点总结大全

★ 高考数学常考知识点

★ 2020高考数学知识点归纳总结大全

高考数学考点有哪些(是带有分值)

不等式

新课标删减的知识点有:分式不等式(只看成二次不等式的应用)

(一)考点剖析

1.不等关系与不等式:高考中,对本节内容的考查,主要放在不等式的性质上,题型多为选择题或填空题,属容易题。

2.一元二次不等式及其解法:高考命题中,对一元二次不等式解法的考查,若以选择题、填空题出现,则会对不等式直接求解,或经常地与、充要条件相结合,难度不大。若以解答题出现,一般会与参数有关,或对参数分类讨论,或求参数范围,难度以中档题为主。

3.简单的线性规划:线性规划问题时多以选择、填空题的形式出现,题型以容易题、中档题为主,考查平面区域的面积、解的问题;随着课改的深入,近年来,以解答题的形式来考查的试题也时有出现,考查学生解决实际问题的能力。

4.基本不等关系:高考命题重点考查均值不等式和证明不等式的常用方法,单纯不等式的命题,主要出现在选择题或填空题,一般难度不太大。

5.不等式的综合应用:不等式的综合应用多以应用题为主,属解答题,有一定的难度。

6.不等式的证明:不等式的证明多以交汇出现,以解答题的形式出现,属中等偏难的试题。

(二)命题规律

在近年的高考中,不等式的考查有选择题、填空题、解答题都有,不仅考查不等式的基础知识,基本技能,基本方法,而且还考查了分析问题、解决问题的能力。解答题以函数、不等式、数列导数相交汇处命题,函数与不等式相结合的题多以导数的处理方式解答,函数不等式相结合的题目,多是先以直觉思维方式定方向,以递推、数学归纳法等方法解决,具有一定的灵活性。

由上述分析,预计不等式的性质,不等式的解法及重要不等知识将以选择题或填空的形式出现;解答题可能出现解不等与证不等式。如果是解不等式含参数的不等式可能性比较大,如果是证明题将是不等式与数列、函数、导数、向量等相结合的综合问题,用导数解答这类问题仍然值得重视。有时属高难度的题。

三)复习建议

1.不等式的证明题题型多变,证明思路多样,技巧性较强,加之又没有一劳永逸、放之四海而皆准的程序可循,所以不等式的证明是本章的难点。攻克难点的关键是熟练掌握不等式的性质和基本不等式,并深刻理解和领会不等式证明中的数学转化思想。

在复习中应掌握证明不等式的常用思想方法:比较法;综合法;分析法;放缩法;反证法;函数法;换元法;导数法。

2.在复习解不等式过程中,注意培养、强化与提高函数与方程、等价转化、分类讨论、数形结合的数学思想和方法,逐步提升数学素养,提高分析解决综合问题的能力。能根椐各类不等式的特点,变形的特殊性,归纳出各类不等式的解法和思路以及具体解法。

3.熟练掌握不等式的基本性质,常见不等式(如一元二次不等式)的解法,不等式在实际问题中的应用,不等式的常用证明方法

平面解析几何

(一)考点剖析

1.点、直线、圆的位置关系问题:本节内容一般以选择题或填空题为主,难度不大,属容易题。

2.直线、圆的方程问题:直线与圆的方程问题多以选择题与填空题形式出现,属容易题。

3.曲线(轨迹)方程的求法:轨迹问题在高考中多以解答题出现,属中档题。

4.有关圆锥曲线的定义的问题:填空题、选择题中出现,属中等偏易题。

5.圆锥曲线新课标降低要求的知识点有:对双曲线只作一般性了解,新课标删减的知识点有:第二定义。的几何性质

6.直线与圆锥曲线位置关系问题:直线与圆锥曲线位置关系涉及函数与方程,数形结合,分类讨论、化归等数学思想方法,因此这部分经常作为高考试题的把关压轴题,命题主要意图是考查运算能力,逻辑揄能力。

(二)命题规律

解析几何是高中数学的一个重要内容从这几年高考来看一般是选择题两题、填空与解答各一题。选择、填空题以中档居多解答一般靠后。试题内容涉及曲线方程、直线与曲线位置关系,并结合函数、方程、不等式、平面向量、导数等知识,综合考查了学生灵活解决问题的能力。

(三)复习建议

1.加强直线和圆锥曲线的基础知识,初步掌握了解决直线与圆锥曲线有关问题的基本技能和基本方法。

2突出学科知识与实际问题的结合,强调对学科知识的灵活运用和解决实际问题的能力。这样的改革促使学生从被动的知识接受者转变为主动的问题解决者。另一方面,高考改革关注考试形式的变化。高考不再只注重传统的笔试,更加注重实践能力和创新精神的考查。.由于直线与圆锥曲线是高考考查的重点内容,选择、填空题灵活多变,思维能力要求较高,解答题背景新颖、综合性强,代数推理能力要求高,因此有必要对直线与圆锥曲线的重点内容、高考的热点问题作深入的研究。

3.通过纵向深入,横向联系,进一步掌握解决直线与圆锥曲线问题的思想和方法,提高我们分析问题和解决问题的能力。求曲线(轨迹)方程。特别是求曲线(轨迹)方程和直线与圆锥曲线的位置关系问题是热点中的热点。

4.定值问题、参数取值范围、最小值等也是重中之重。

立体几何

新课标增加的知识点有:三视图。

删减的知识点有:三垂线定理及其逆定理;

降低要求的知识点有:仅要求认识柱、锥、台、球及简单组合体的结构特征,通过实例概括出结构特征,不必证明,对棱柱、正棱锥、求的性质不必深入挖掘。

(一)考点剖析

1.空间几何体的结构、三视图、直观图:柱、锥、台、球体及其简单组合体的结构特征在旧教材中出现过,而三视图为新增内容,一般情况下,新增内容会重点考查,三视图是出题的热点,题型多以选择题、填空题为主,也有出现在解答题里,如2007年广东高考就出现在解答题里,属中等偏易题。

2.空间几何体的表面积和体积:柱、锥、台、球的表面积和体积以公式为主,按照新课标的要求,体积公式不要求记忆,只要掌握表面积的计算方法和体积的计算方法即可。因此,题目从难度上讲属于中档偏易题。

3.点、线、面的位置关系:主要考查平面的基本性质、空间两条直线的位置关系,多以选择题、填空题为主,难度不大。

4.直线与平面、平面与平面平行的判定与性质:主要考查线线、面面平行的判定与性质,多以选择题和解答题形式出现,解答题中多以证明线面平行、面面平行为主,属中档题。直线与平面、平面与平面垂直的判定与性质:主要考查线线、面面垂直的判定与性质,多以选择题和解答题形式出现,解答题中多以证明线线垂直、线面垂直、面面垂直为主,属中档题。

(二)命题规律

涉及立体几何内容的命题形式变化最多。

除保留传统的“四选一”的选择题型外,还尝试开发了“多选填空”、“完型填空”、“构造填空”等题型。立体几何在2010年高考中的考查题型一般会有1—2题选择题或填空题的小题、1道解答题的大题,难度多为中、低档。小题着重考查基础知识与基本定理的理解,特别是线线、线面、面面平行(或垂直)这3种平行(或垂直)关系的判定与性质。通常有一个小题还会与命题、充要条件等知识要点交汇出现,而另一个小题则是三视图的识别、表面积与体积的计算。对于大题,往往会以简单的几何体为载体,分2—3个小题的形式出现,坡度降低,难点分散。主要考查点、直线、平面的位置关系及相关距离或角、空间几何体的表面积与体积的计算,同时涉及探究性问题、立体图形的展开与平面图形的翻折问题、定值与最值问题等,文科主要考查直接法,而理科则是直接法与向量法并重,但趋向于应用向量法解决。

“动态”立几是近几年来高考立体几何中注入的新血液,常考常新。其特点一是落实基本知识与基本思想方法,其二是注重立几知识与其它知识(如解析几何、函数、不等式、导数、三角函数等)的有机结合。随着新课程的改革,今后高考命题中应会适当增加关于“动态”立体几何的问题。

高考数学必须每一题都要画图吗?

我就考过那个。。

当然不是啊.如果题目没有必须的要求是可以不要图的.

(2)互异性:对于一个给定的,中的元素一定是不同的(或说是互异的),这就是说,中的任何两个元素都是不同的对象,相同的对象归入同一个时只能算作的一个元素。

一看题目就知道,还有有些选择题用排除法或赋值法也可得出,没必要画图,再说高考每个画图,试问你那么多时间吗

数学高考考多少知识点

6、统计5分

新高考数学各知识点所占比如下:

一、分数占比

1、5分

2、三大函数5分

3、立体几何初步12分+5分

4、平面几何初步5分+12分

5、算法初步5分

7、概率 5分+12分

8、三角函数恒等变换5分+5分+12分

9、平面向量5分

10、解三角形5分+12分

11、数列5分+12分

12、不等式5分+12分

13、常用逻辑用语5分

14、圆锥曲线与方程5分+12分

15、空间向量与立体几何5分+12分

16、导数及应用5分+12分

18、数系扩充与复数的引入5分

19、计数原理5分

20、坐标系与参数方程10分

二、题型

1、选择+填空(8题单选+4题多选+41.映射; 2.函数; 3.函数的单调性;题填空)16道,每道5分,共80分。占总分的大半。送分题、基础题较多,以书上性质、公式的运用为主。

2、、复数:默认送分题。平面向量:能建系尽量建系做。计数原理:以二次项定理与分配问题居多。统计与概率:可能会在读题上挖坑。其他:命题、各章基本概念、计算(不等式或者比大小)

3、中题会以几何或函数为主,可能会考新定义题。几何:解三角形、立体几何、解析几何。函数:函数(指对幂、正余切)的性质(单调奇偶对称周期)与图像(识别和变换)、简单求导、构造函数(常见于指对数比大小)。

总结一下高考数学基本公式

一些高中数学学习网站

如果时间不够,自己选择可看可不看

十字交叉双乘法没有公式,下面说一下:

那就是利用x^2+(p+q)x+pq=(x+q)(x+p)其中PQ为常数。x^2是X的平方

1.因式分解

即和化积,其结果要分解到不能再分为止。而且可以肯定一个多项式要能分解因式,则结果,因为:数域F上的次数大于零的多项式f(x),如果不计零次因式的异,那么f(x)可以的分解为以下形式:

f(x)=aP1k1(x)P2k2(x)…Piki(x),其中α是f(x)的次项的系数,P1(x),P2(x)……Pi(x)是首1互不相等的不可约多项式,并且Pi(x)(I=1,2…,t)是f(x)的Ki重因式。

()或叫做多项式f(x)的典型分解式。证明:可参见《高代》P52-53

初等数学中,把多项式的分解叫因式分解,其一般步骤为:一提二套三分组等

要求为:要分到不能再分为止。

2.方法介绍

2.1提公因式法:

如果多项式各项都有公共因式,则可先考虑把公因式提出来,进行因式分解,注意要每项都必须有公因式。

例15x3+10x2+5x

解析显然每项均含有公因式5x故可考虑提取公因式5x,接下来剩下x2+2x+1仍可继续分解。

解:原式=5x(x2+2x+1)

=5x(x+1)2

2.2公式法

即多项式如果满足特殊公式的结构特征,即可采用套公式法,进行多项式的因式分解,故对于一些常用的公式要求熟悉,除教材的基本公式外,数学竞赛中常出现的一些基本公式现整理归纳如下:

a2-b2=(a+b)(a-b)

a2±2ab+b2=(a±b)2

a3+b3=(a+b)(a2-ab+b2)

a3-b3=(a-b)(a2+ab+b2)

a3±3a2b+3ab2±b2=(a±b)3

a2+b2+c2+2ab+2bc+2ac=(a+b+c)2

a12+a22+…+an2+2a1a2+…+2an-1an=(a1+a2+…+an)2

a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-ac-bc)

说明由因式定理,即对一元多项式f(x),若f(b)=0,则一定含有一次因式x-b。可判断当n为偶数时,当a=b,a=-b时,均有an-bn=0故an-bn中一定含有a+b,a-b因式。

例2分解因式:①64x6-y12②1+x+x2+…+x15

解析各小题均可套用公式

解①64x6-y12=(8x3-y6)(8x3+y6)

=(2x-y2)(4x2+2xy2+y4)(2x+y2)(4x2-2xy2+y4)

②1+x+x2+…+x15=

=(1+x)(1+x2)(1+x4)(1+x8)

注多项式分解时,先构造公式再分解。

2.3分组分解法

当多项式的项数较多时,可将多项式进行合理分组,达到顺利分解的目的。当然可能要综合其他分法,且分组方法也不一定。

例1分解因式:x15+m12+m9+m6+m3+1

=m12(m3+1)+m6(m3+1)+(m3+1)

=(m3+1)(m12+m6++1)

=(m3+1)[(m6+1)2-m6]

=(m+1)(m2-m+1)(m6+1+m3)(m6+1-m3)

例2分解因式:x4+5x3+15x-9

解析可根据系数特征⑤一般式:(A,B不全为0)进行分组

解原式=(x4-9)+5x3+15x

=(x2+3)(x2-3)+5x(x2+3)

=(x2+3)(x2+5x-3)

2.4十字相乘法

对于形如ax2+bx+c结构特征的二次三项式可以考虑用十字相乘法,

即x2+(b+c)x+bc=(x+b)(x+c)当x2项系数不为1时,同样也可用十字相乘进行作。

例3分解因式:①x2-x-6②6x2-x-12

解①1x2

1x-3

原式=(x+2)(x-3)

②2x-3

3x4

原式=(2x-3)(3x+4)

注:“ax4+bx2+c”型也可考虑此种方法。

2.5双十字相乘法

在分解二次三项式时,十字相乘法是常用的基本方法,对于比较复杂的多项式,尤其是某些二次六项式,如4x2-4xy-3y2-4x+10y-3,也可以运用十字相乘法分解因式,其具体步骤为:

(1)用十字相乘法分解由前三次组成的二次三项式,得到一个十字相乘图

(2)把常数项分解成两个因式填在第二个十字的右边且使这两个因式在第二个十字中交叉之积的和等于原式中含y的一次项,同时还必须与个十字中左端的两个因式交叉之积的和等于原式中含x的一次项

例5分解因式

①4x2-4xy-3y2-4x+10y-3②x2-3xy-10y2+x+9y-2

③ab+b2+a-b-2④6x2-7xy-3y2-xz+7yz-2z2

解①原式=(2x-3y+1)(2x+y-3)

2x-3y1

②原式=(x-5y+2)(x+2y-1)

x-5y2

x2y-1

③原式=(b+1)(a+b-2)

0ab1

ab-2

④原式=(2x-3y+z)(3x+y-2z)

2x-3yz

3x-y-2z

说明:③式补上oa2,可用双十字相乘法,当然此题也可用分组分解法。

如(ab+a)+(b2-b-2)=a(b+1)+(b+1)(b-2)=(b+1)(a+b-2)

④式三个字母满足二次六项式,把-2z2看作常数分解即可:

2.6拆法、添项法

对于一些多项式,如果不能直接因式分解时,可以将其中的某项拆成二项之或之和。再应用分组法,公式法等进行分解因式,其中拆项、添项方法不是,可解有许多不同途径,对题目一定要具体分析,选择简捷的分解方法。

例6分解因式:x3+3x2-4

解析法一:可将-4拆成-1,-3即(x3-1)+(3x2-3)

法二:添x4,再减x4,.即(x4+3x2-4)+(x3-x4)

法三:添4x,再减4x即,(x3+3x2-4x)+(4x-4)

法四:把3x2拆成4x2-x2,即(x3-x2)+(4x2-4)

法五:把x3拆为,4x2-3x3即(4x3-4)-(3x3-3x2)等

解(选择法四)原式=x3-x2+4x2-4

=x2(x-1)+4(x-1)(x+1)

=(x-1)(x2+4x+4)

=(x-1)(x+2)2

2.7换元法

换元法就是引入新的字母变量,将原式中的字母变量换掉化简式子。运用此

种方法对于某些特殊的多项式因式分解可以起到简化的效果。

例7分解因式:

(x+1)(x+2)(x+3)(x+4)-120

解析若将此展开,将十分繁琐,但我们注意到

(x+1)(x+4)=x2+5x+4

(x+2)(x+3)=x2+5x+6

故可用换元法分解此题

解原式=(x2+5x+4)(x2+5x+6)-120

令y=x2+5x+5则原式=(y-1)(y+1)-120

=y2-121

=(y+2.描述法:一种更有效地描述的方法,是用中元素的特征性质来描述。11)(y-11)

=(x2+5x+16)(x2+5x-6)

=(x+6)(x-1)(x2+5x+16)

注在此也可令x2+5x+4=y或x2+5x+6=y或x2+5x=y请认真比较体会哪种换法更简单?

2.8待定系数法

待定系数法是解决代数式恒等变形中的重要方法,如果能确定代数式变形后的字母框架,只是字母的系数高不能确定,则可先用未知数表示字母系数,然后根据多项式的恒等性质列出n个含有特殊确定系数的方程(组),解出这个方程(组)求出待定系数。待定系数法应用广泛,在此只研究它的因式分解中的一些应用。

例7分解因式:2a2+3ab-9b2+14a+3b+20

分析属于二次六项式,也可考虑用双十字相乘法,在此我们用待定系数法

先分解2a2+3ab+9b2=(2a-3b)(a+3b)

解设可设原式=(2a-3b+m)(a+3b+n)

比较两个多项式(即原式与式)的系数

m+2n=14(1)m=4

3m-3n=-3(2)=>

mn=20(3)n=5

∴原式=(2x-3b+4)(a+3b+5)

注对于()式因为对a,b取任何值等式都成立,也可用令特殊值法,求m,n

令a=1,b=0,m+2n=14m=4

=>

令a=0,b=1,m=n=-1n=5

对于整系数一元多项式f(x)=anxn+an-1xn-1+…+a1x+a0

由因式定理可先判断它是否含有一次因式(x-)(其中p,q互质),p为首项系数an的约数,q为末项系数a0的约数

若f()=0,则一定会有(x-)再用综合除法,将多项式分解

例8分解因式x3-4x2+6x-4

解这是一个整系数一元多项式,因为4的正约数为1、2、4

∴可能出现的因式为x±1,x±2,x±4,

∵f(1)≠0,f(1)≠0

但f(2)=0,故(x-2)是这个多项式的因式,再用综合除法

21-46-4

2-44

1-220

所以原式=(x-2)(x2-2x+2)

当然此题也可拆项分解,如x3-4x2+4x+2x-4

=x(x-2)2+(x-2)

=(x-2)(x2-2x+2)

分解因式的方法是多样的,且其方法之间相互联系,一道题很可能要同时运用多种方法才可能完成,故在知晓这些方法之后,一定要注意各种方法灵活运用,牢固掌握!

没必要自己弄,书店一本(数理化大全)全有,才十元。又详细,又好。

本人数学,即将高考,高考数学必考啥,?典型例题可以列举不?如何懵题。正常数学十分,不过其他科目

你可解原式=(x15+m12)+(m9+m6)+(m3+1)以看一下往年的高考题,尤其是选择和填空,而且就看前面几道题,类型应该大都是固定的,从这些题目下手感觉对你帮助还是有的

二次函数解析式的三种形式:高中经典题目,希望对你有帮助

高考数学主要考点

有些的元素较多,元素的排列又呈现一定的规律,在不致于发生误解的情况下,也可以列出几个元素作为代表,其他元素用省略号表示。

高考数学考点包括函数与不等式、数列、解析几何、平面下向量的数量积、一元二次不等式、直线方程、指数与对数、函数与方程、线性规划、流程图、基本算法语句、充分条件必要条件、简单的逻辑连接词等。

高考数学的主要考点涵盖了数学的各个领域和知识点,通过考察学生在这些领域的掌握程度和应用能力来评估他们的数学水平。高考数学的考点通常涵盖了代数与函数、几何与立体几何、数与式、方程与不等式、数列与数列求和、概率与统计等多个知识点和技巧。了解和掌握这些考点对于考生在高考数学中取得好成绩至关重要。

高考数学的主要考点是建立在学生对基本概念和解题方法的理解和掌握的基础上的。对于每个考点,考生需要理解其概念和性质,具备相应的运算和推理能力,并能够熟练应用这些知识和技巧来解决与之相关的问题。高考数学需要科学合理的备考策略和技巧。详细了解高考数学的考纲和考点,了解每个考点的考察方式和要求,明确重要考点的权重。

学习基础知识,巩固数学基础知识,理解概念和原理,掌握基本的公式和定理。这是解决各类数学问题的基础,做真题和模拟试题:通过做真题和模拟试题,熟悉考试的题型和难度,了解解题思路和解题方法。同时,注意审题和计算的准确性。分析错题和弱点:对错题进行分析,查找错题的原因,并通过针对性的练习和复习强化薄弱点。

培养解题技巧,掌握解题的方法和技巧,如选择适当的计算方法、建立数学模型、理解图形和数据之间的关系等。度提升:除了学习与应试相关的数学知识,多参加实践活动、科技创新项目、数学竞赛等,提升数学思维和应用能力。高考数学备考需要长期的努力和系统的学习。通过科学合理的备考策略和技巧,考生可以更好地掌握考试内容和解题方法。

高考改革与全面素质培养

高考作为教育体制中的重要组成部分,在近年来经历了一系列的改革和调整。这些改革旨在培养学生的全面素质,促进学生的综合发展,突出考察学生的能力和潜力。一方面,高考改革注重考试内容的变②真子集:如果A?B,且A≠B那就说A是B的真子集,记作AB(或BA)革。除了基础学科的考核外,注重学生实际应用能力的考察。

增加了综合性实践活动和科技创新项目等考核内容,培养学生的动手能力、合作精神和创新意识。此外,高考改革强调综合素质评价的意义。除了学科成绩的评估外,学生的综合素质评价成为高考录取过程中的重要因素。

高考必备数学公式

高考必备数学公式:

1、三角函数:sin(a+b)=sin(a)cos(b)+cos(a)sin(b)、cos(a+b)=cos(a)cos(b)-sin(a)sin(b)、tan(a+b)=(tan(a)+tan(b))/(1-tan(a)tan(b))、sin^2(a)+cos^2(a)=1、1+tan^2(a)=sec^2(a)、1+cot^2(a)=csc^2(a)

2、平面几何:勾股定理:a^2+b^2=c^2、圆的面积:S=πr^2、圆的周长:C=2πr、正方形的面积:S=a^2、矩形的面积:S=长×宽、平行四边形的面积:S=底边×高、梯形的面积:S=1/2×(上底+下底)×高、三角形的面积:S=1/2×底边×高或者海龙公式:S=sqrt[p(p-a)(p-b)(p-c)],其中,p=(a+b+c)/2

3、解析几何:两点间距离公式:d=sqrt[(x2-x1)^2+(y2-y1)^2]、点到直线距离公式:d=|Ax+By+C|/sqrt(A^2+B^2),其中 | | 表示、平面曲线极坐标方程:(x,y)=(rcosθ,rsinθ)

4、概率论:乘法公式:P(A∩B)=P(A)×P(B|A)、加★ 高考数学必考知识点考点2020大全总结法公式:P(A∪B)=P(A)+P(B)-P(A∩B)、全概率公式:P(B)=∑P(Ai)×P(B|Ai),其中,Ai是样本空间的划分、贝叶斯公式:P(B|A)=P(A|B)×P(B)/P(A),其中,P(B)是先验概率,P(A)和P(A|B)是后验概率

数=2a2+3ab-9b2+(m+2n)a+(3m-3n)b+mn……………学高考做题技巧

1、认真审题:在考试中,一定要认真审题,对于不懂的词汇或概念,可结合前后文理解或求助老师。在做题之前,一定要理解题目的意思,抓住重点,并阅读题目中的条件和要求,以此正确解题。

2、要分类讨论:在解题过程中,如遇到问题不是一步就能解答的,可以通过分类讨论的方式,对原题进行分拆,例如把问题一分为二,进行逐步推导,这样可以减少答错的概率。

3、掌握公式和技巧:高考数学考试中需要运用很多公式和技巧,在平时复习时一定要把它们掌握,例如完成三角函数类的题目,首先需要掌握三角函数的定义和性质,以此来实现正确解答。

4、要多练习:做高考数学题的技巧是积累的,因此,认真完成老师布置的作业,多做模拟题和历年真题,可以增强做题的信心和耐力,锻炼做题的速度和准确性。

5、勇于放弃:在考试过程中,有些题目难度过大或因为个人知识储备不足而无法解答,这时就要及时放弃,不要浪费时间影响后续的答题,要合理安排时间,优先解答易解和得分高的题目。

高中数学必考知识点归纳大全

1、 高一数学 知识点总结:一、有关概念

高中数学必考知识点归纳大全

7、在学习中,要有意识地注意知识的迁移,培养解决问题的能力。

1.的含义

2.的中元素的三个特性:

(1)元素的确定性如:世界上的山

(2)元素的互异性如:由HAPPY的字母组成的{H,A,P,Y}

(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个

3.的表示:{…}如:{我校的 篮球 队员},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示:A={我校的篮球队员},B={1,2,3,4,5}

(2)的表示 方法 :列举法与描述法。

注意:常用数集及其记法:

非负整数集(即自然数集)记作:N

正整数集N或N+整数集Z有理数集Q实数集R

1)列举法:{a,b,c……}

2)描述法:将中的元素的公共属性描述出来,写在大

括号内表示的方法。{x∈R|x-3>2},{x|x-3>2}

3)语言描述法:例:{不是直角三角形的三角形}

4)Venn图:

4、的分类:

(1)有限集含有有限个元素的

(2)无限集含有无限个元素的

(3)空集不含任何元素的例:{x|x2=-5}

2、高一数学知识点总结:间的基本关系

1.“包含”关系—子集

注意:A?B有两种可能(1)A是B的一部分;(2)A与B是同一。

反之:A不包含于B,或B不包含A,记作A?/B或B?/A

2.“相等”关系:A=B(5≥5,且5≤5,则5=5)

实例:设A={x|x2

-1=0}B={-1,1}“元素相同则两相等”即:①任何一个是它本身的子集。A?A

③如果A?B,B?C,那么A?C

④如果A?B同时B?A那么A=B

3.不含任何元素的叫做空集,记为Φ

规定:空集是任何的子集,空集是任何非空的真子集。

有n个元素的,含有2n个子集,2n-1个真子集,一般我们把不含任何元素的叫做空集。

3、高一数学知识点总结:的分类(1)按元素属性分类,如点集,数集。(2)按元素的个数多少,分为有/无限集

关于的概念:

(1)确定性:作为一个的元素,必须是确定的,这就是说,不能确定的对象就不能构成,也就是说,给定一个,任何一个对象是不是这个的元素也就确定了。

(3)无序性:判断一些对象时候构成,关键在于看这些对象是否有明确的标准。

可以根据它含有的元素的个数分为两类:

含有有限个元素的叫做有限集,含有无限个元素的叫做无限集。

非负整数全体构成的,叫做自然数集,记作N;

在自然数集内排除0的叫做正整数集,记作N+或N;

整数全体构成的,叫做整数集,记作Z;

有理数全体构成的,叫做有理数集,记作Q;(有理数是整数和分数的统称,一切有理数都可以化成分数的形式。)

实数全体构成的,叫做实数集,记作R。(包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的点一一对应的数。)

1.列举法:如果一个是有限集,元素又不太多,常常把的所有元素都列举出来,写在花括号“{}”内表示这个,例如,由两个元素0,1构成的可表示为{0,1}.

例如:不大于100的自然数的全体构成的,可表示为{0,1,2,3,…,100}.

无限集有时也用上述的列举法表示,例如,自然数集N可表示为{1,2,3,…,n,…}.

例如:正偶数构成的,它的每一个元素都具有性质:“能被2整除,且大于0”

而这个外的其他元素都不具有这种性质,因此,我们可以用上述性质把正偶数表示为

{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},

大括号内竖线左边的X表示这个的任意一个元素,元素X从实数中取值,在竖线右边写出只有内的元素x才具有的性质。

一般地,如果在I中,属于A的任意一个元素x都具有性质p(x),而不属于A的元素都不具有的性质p(x),则性质p(x)叫做A的一个特征性质。于是,A可以用它的性质p(x)描述为{x∈I│p(x)}

它表示A是由I中具有性质p(x)的所有元素构成的,这种表示的方法,叫做特征性质描述法,简称描述法。

例如:A={x∈R│x2-1=0}的特征是X2-1=0

高一数学必修一知识点摘要

(1)直线的倾斜角

定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°

(2)直线的斜率

①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。

②过两点的直线的斜率公式:

注意下面四点:

(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

(2)k与P1、P2的顺序无关;

(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

(3)直线方程

①点斜式:直线斜率k,且过点

注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。

②斜截式:,直线斜率为k,直线在y轴上的截距为b

③两点式:()直线两点,

④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。

注意:○1各式的适用范围

○2特殊的方程如:平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);

(4)直线系方程:即具有某一共同性质的直线

高一数学知识点小结

1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:

解析式

顶点坐标

对称轴

y=ax^2

(0,0)

x=0

y=a(x-h)^2

(h,0)

x=h

y=a(x-h)^2+k

(h,k)

x=h

y=ax^2+bx+c

(-b/2a,[4ac-b^2]/4a)

x=-b/2a

当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,

当h<0时,则向左平行移动|h|个单位得到.

当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;

当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;

当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;

当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;

因此,研究抛物线y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大置就很清楚了.这给画图象提供了方便.

2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).

3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小.

4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:

(1)图象与y轴一定相交,交点坐标为(0,c);

(2)当△=b^2-4ac>0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

(a≠0)的两根.这两点间的距离AB=|x?-x?|

当△=0.图象与x轴只有一个交点;

当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.

5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x=-b/2a时,y最小(大)值=(4ac-b^2)/4a.

顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.

6.用待定系数法求二次函数的解析式

(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:

y=ax^2+bx+c(a≠0).

(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).

(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a≠0).

7.二次函数知识很容易与 其它 知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的 热点 考题,往往以大题形式出现.

高中数学必考知识点归纳大全相关 文章 :

★ 高中数学必考知识点归纳整理

★ 高中数学必考知识点归纳

★ 高中数学知识点全总结最全版

★ 高一数学有用必考知识点归纳

★ 高中数学知识点大全

★ 高中数学全部知识点提纲整理

★ 高中数学考点整理归纳

★ 高中数学知识点总结及公式大全

★ 高中数学知识点全总结

高考数学必考知识点?

7. 关于点对称和关于某直线对称:

2011年高考数学考点(139个)

必修(115个)

1.; 2.子集; 3.补集;

4.交集; 5.并集; 6.逻辑连结词;

7.四种命题; 8.充要条件.

二、函数(30课时,12个)

4.反函数; 5.互为反函数的函数图象间的关系; 6.指数概念的扩充;

7.有理指数幂的运算; 8.指数函数; 9.对数;

10.对数的运算性质; 11.对数函数. 12.函数的应用举例.

三、数列(12课时,5个)

1.数列; 2.等数列及其通项公式; 3.等数列前n项和公式;

4.等比数列及其通顶公式; 5.等比数列前n项和公式.

四、三角函数(46课时17个)

1.角的概念的推广; 2.弧度制; 3.任意角的三角函数;

4,单位圆中的三角函数线; 5.同角三角函数的基本关系式;

6.正弦、余弦的诱导公式’ 7.两角和与的正弦、余弦、正切;

8.二倍角的正弦、余弦、正切; 9.正弦函数、余弦函数的图象和性质;

10.周期函数; 11.函数的奇偶性; 12.函数 的图象;

13.正切函数的图象和性质; 14.已知三角函数值求角; 15.正弦定理;

16余弦定理; 17斜三角形解法举例.

五、平面向量(12课时,8个)

1.向量 2.向量的加法与减法 3.实数与向量的积;

4.平面向量的坐标表示; 5.线段的定比分点; 6.平面向量的数量积;

7.平面两点间的距离; 8.平移.

六、不等式(22课时,5个)

1.17、推理与证明12分不等式; 2.不等式的基本性质; 3.不等式的证明;

4.不等式的解法; 5.含的不等式.

七、直线和圆的方程(22课时,12个)

1.直线的倾斜角和斜率; 2.直线方程的点斜式和两点式; 3.直线方程的一般式;

4.两条直线平行与垂直的条件; 5.两条直线的交角; 6.点到直线的距离;

7.用二元一次不等式表示平面区域; 8.简单线性规划问题. 9.曲线与方程的概念;

10.由已知条件列出曲线方程; 11.圆的标准方程和一般方程; 12.圆的参数方程.

八、圆锥曲线(18课时,7个)

1椭圆及其标准方程; 2.椭圆的简单几何性质; 3.椭圆的参数方程;

4.双曲线及其标准方程; 5.双曲线的简单几何性质; 6.抛物线及其标准方程;

7.抛物线的简单几何性质.

九、(B)直线、平面、简单何体(36课时,28个)

1.平面及基本性质; 2.平面图形直观图的画法; 3.平面直线;

4.直线和平面平行的判定与性质; 5,直线和平面垂直的判与性质;

6.三垂线定理及其逆定理; 7.两个平面的位置关系;

8.空间向量及其加法、减法与数乘; 9.空间向量的坐标表示;

10.空间向量的数量积; 11.直线的方向向量; 12.异面直线所成的角;

13.异面直线的公垂线; 14异面直线的距离; 15.直线和平面垂直的性质;

16.平面的法向量; 17.点到平面的距离; 18.直线和平面所成的角;

19.向量在平面内的射影; 20.平面与平面平行的性质; 21.平行平面间的距离;

22.二面角及其平面角; 23.两个平面垂直的判定和性质; 24.多面体;

25.棱柱; 26.棱锥; 27.正多面体; 28.球.

十、排列、组合、二项式定理(18课时,8个)

1.分类计数原理与分步计数原理. 2.排列; 3.排列数公式’

4.组合; 5.组合数公式; 6.组合数的两个性质;

7.二项式定理; 8.二项展开式的性质.

十一、概率(12课时,5个)

1.随机的概率; 2.等可能的概率; 3.互斥有一个发生的概率;

4.相互同时发生的概率; 5.重复试验.

选修Ⅱ(24个)

十二、概率与统计(14课时,6个)

1.离散型随机变量的分布列; 2.离散型随机变量的期望值和方; 3.抽样方法;

4.总体分布的估计; 5.正态分布; 6.线性回归.

十三、极限(12课时,6个)

1.数学归纳法; 2.数学归纳法应用举例; 3.数列的极限;

4.函数的极限; 5.极限的四则运算; 6.函数的连续性.

十四、导数(18课时,8个)

1.导数的概念; 2.导数的几何意义; 3.几种常见函数的导数;

4.两个函数的和、、积、商的导数; 5.复合函数的导数; 6.基本导数公式;

7.利用导数研究函数的单调性和极值; 8函数的值和最小值.

十五、复数(4课时,4个)

1.复数的概念; 2.复数的加法和减法; 3.复数的乘法和除法;

4.数系的扩充.

给出地区

考纲

版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。