(2)
高考数学三角函数手写题 数学三角函数手写笔记
高考数学三角函数手写题 数学三角函数手写笔记
4.若 ,则
(5)若 ,则
5.已知角 的顶点与原点重合,始边与 轴的正半轴重合,终边在直线 上,则
9.若 是第三象限的角,则
(9)已知 ,函数 在 单调递减,则 的取值范围是
(15)设当 时,函数 取得值,则 .
(14)函数 的值为 .
(6)如图,圆 的半径为 , 是圆上的定点, 是圆上的动点,角 的始边为射线 ,终边为射线 ,过点 作直线 的垂线,垂足为 . 将点 到直线 的距离表示成 的函数 ,则 在 的图像大致为
(8)设 ,且 ,则
(8)函数 的部分图像如图所示,则 的单调递减区间为
(14)函数 的图像可由函数 的图像至少向右平移 个单位长度得到.
(7)若将函数 的图像向左平移 个单位长度,则平移后图像的对称轴为
(9)若 ,则
6.设函数 ,则下列结论错误的是
的即sin(2a+π/6)=-1/8一个周期为
的图像关于直线 对称
的一个零点为
在 单调递减
14.函数 的值是 .
A.把 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移 个单位长度,得到曲线
B.把 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移 个单位长度,得到曲线
C.把 上各点的横坐标缩短到原来的 倍,纵坐标不变,再把得到的曲线向右平移 个单位长度,得到曲线
D.把 上各点的横坐标缩短到原来的 倍,纵坐标不变,再把得到的曲线向左平移 个单位长度,得到曲线
15.函数 在 的零点个数为 .
10.若 在 是减函数,则 的值是
15.已知 则 .
9.下列函数中,以 为周期且在 区间单调递增的是
5.函数 在 的图像大致为
11.关于函数 有下述四个结论:
(2) 在区间 单调递增
(3) 在 有 4 个零点
(4) 的值为 2
其中所有正确结论的编号是
A.①②④
B.②④
C.①④
设函数 . 若存在 的极值点 满足 ,则 的取值范围是
设函数 ,已知 在 有且5个零点,下述四个结论:
① 在 有且3个极大值点
② 在 有且2个极大值点
③ 在 单调递增
④ 的取值范围是
其中所有正确结论的编号是
A.①④
B.②③
C.①②③
D.①③④
先说公式一: 设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα k∈z
cos(2kπ+α)=cosα k∈z
tan(2kπ+α)=tanα k∈z
cot(2kπ+α)=cotα k∈z
推导过程其实很简单,但在这之前一定要理解三角函数本身的定义,与初中在直角三角形的定义不同,高中学习的角已经拓展到任意角了,所以三角函数的定义和初中也不一样,
高中课本的三角函数的定义是,设一个角的终边与单位圆交点的坐标为(x,y),则一个角的正弦是这个角的终边与单位圆交点的纵坐标,即sinα=y ,一个角的余弦是这个角的终边与单位圆交点的横坐标即cosα=x ,一个角的正切是这个角的终边与单位圆交点的纵坐标与横坐标之比即tanα=y/x ,一个角的余切是这个角的终边与单位圆交点的横坐标与纵坐标之比即cotα=x/y . ,明白三角函数的定义后你就知道为什么终边相同的角的三角函数值相等了,因为他们的终边相同,所以与单位圆的交点是相同的,所以三角函数值相等。
再说公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα k∈z
cos(π+α)=-cosα k∈z
tan(π+α)=tanα k∈z
cot(π+α)=cotα k∈z
其实也是这样,因为角α与π+α他们的终边关系其实是关于原点对称的,终边关于原点对称,那么与单位圆的交点就关于原点对称,而关于原点对称的点,他们的横坐标和纵坐标都互为相反数,即如果α的终边与单位圆交点的坐标为(x,y)那么π+α的坐标就是(-x,-y),所以三角函数值的关系就是正弦余弦都要互为相反数,而正切余切的值不变。
公式三: 任意角α与 -α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
也是这样,因为α与 -α的终边关系是关于x轴对称,所以终边与单位圆的交点也是关于x轴对称,所以与单位圆交点的坐标关系是:若α终边与单位圆交点为(x,y),则 -α终边与单位圆交点则为(x,-y),所以余弦值不变,正弦值要变为相反数,正切余切也变为相反数。
公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)D.①③=-tanα
cot(π-α)=-cotα
公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式4和公式5的推导很简单,只要把减α看成是加上-α就行了。
公式六: π/2±α与α的三角函数值之间的关系其实和公式3不多,就是要看π/2±α与α的终边关系,先说π/2+α和α,他们的终边其实是关于直线y=x对称的,那你想想,关于直线直线y=x对称的点是什么关系?其实就是x、y要互换,也就是说如果α的终边与单位圆交点的坐标为(x,y)
那么π/2+α的终边与单位圆交点的坐标为(y,x),所以正弦余弦值要互换,正切余切也要互换
即sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
而sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα 怎样推导呢,只要把π/2-α看成是π/2+(-α)就行了!
这些公式推导,当然要用数学知识来推导,但是你主要是没弄清楚三角函数的定义(概念),所以不理解。 只有理解好三角函数的定义,才能理解诱导公式的推导!希望设为。(本人是高中数学老师)
解 :(1)由图像知,函数振幅为2,故A=2
由图像知从-π/3到2π/3是半个周期,故T=[(2π/3-(-π/3)]2=2π
即2π/ω=2π, 所以ω=1
所以f(x)=2sin(x+φ)
把点(2π/3, 2)(或点(-π/3,-2))代入函数,得2=2sin(2π/3+φ)
故sin(2π/3+φ)=1
即φ=2kπ-π/6(k∈Z)
因为-π/2<φ<π/2
所以φ=-π/6
所以f(x)=2sin(x-π/6)
(2)因f(a)=3/2, 即sin(a-π/6)=3/4
所以sin(2a+π/6)=cos[π/2 -(2a+π/6)](这里利用诱导公式cos(π/2-a)=sina)
=cos(π/3-2a)=cos(2a-π/3)(这里利用诱导公式cos(-a)=cosa)
=cos[2(a-π/6)]=1-2[sin(a-π/6)]^2 (这里利用2倍角公式)
=1-2(3/4)^2=-1/8
一、回归课本为主, 找准备考方向
学生根据自己的丢分情况,找到适合自己的备考方向。 基础的学生,层层追溯到自己学不好的根源。 无论哪个学科, 基本上都是按照教材层层关联的, 希望基础不好的同学以课本为主,配套练习课本后的练习题,以中等题、简单题为辅、 逐渐吃透课本,也渐渐提高信心。只要把基础抓好, 那么考试时除了一些较难的题目, 基本上都可以凭借能力拿下,分数的高低仅剩下发挥的问题。
二、循序渐进,切忌急躁
在复习的时候, 由于是以自己为主导, 有时候复习的版块和教学进度不同,当考试时会发现没有复习到的部分丢分。导致成绩不高。 但是已经复习过的版块,却大多能够拿下。这就是进步,不要因为用一时的分数高低做为衡量标准,复习要循序渐进,不要急躁。复习就像修一 条坑坑洼洼的路, 每个坎坷都是障碍,我们只有认真的从起点开始,按照顺序慢慢推平。哪怕前面依旧沟整,但是当你回头的时候,展现在你眼前的是一条康庄大道。基本上, 如果纯做题的话, 1 -2个月时间就能把各科的试题从章节到一个章节摸得不多。
三、合理利用作业试题、 试卷
简单题、中等题一方面可以印证、检验自己的基础知识体系, 又一方面可以提升我们复习的信心。在选择作业上,简单题、中等题尤其是概念理解应用题一 定要自己动手做,还要进行总结。 难题可以参, 但要认真思考其中的步骤推导思想和转化思想,这些都是高考所考察的。语文要充分利用试卷,其中的成语、病句要注重收集,文言文虚实词记得要摘录。英语单词注意把正确选项带人念熟。 同时思考阅读、完型题是如何找到有效的原文信息,他们有何特点和提示点? 要这么去利用每一次作业和试卷,那么成绩将会短期内提高。
四、建立信心, (1) 是偶函数 不计一时10.已知 ,则得失
有些学生自认为自己是生, 无可救了。但是事实上往往不是这样。有些学生认为自己天生比别人笨, 不如别人聪明。也许在某一方面上确实是有自身的缺陷,但是却忽略了自己的优势所在。为了自己心中那份或许并不是十分确定的梦想,一定要打起精神。前面也说过,考试不要记一时得失,而是要不断的总结归纳。中等生,只要你不放弃,找到自己的缺陷,严格给自己定下复习要求并认真执行,获取600分,只需要2-3个月,就能达到。
∵1+tanA/tanB=2c/b, ∴结合正弦定理,容易得出:1+tanA/tanB=2sinC/sinB, ∴tanA+tanB=2sinC/sinB]tanB, ∴sinA/cosA+sinB/cosB=2sinC/cosB, ∴(sinAcosB+cosAsinB)/(cosAcosB)=2sinC/cosB, ∴sin(A+B)/cosA=2sinC, ∴sin(180°-C)/cosA=2sinC, ∴sinC/cosA=2sinC, 显然,sinC>0, ∴1/cosA=2, ∴cosA=1/2, ∴∠A=60°.
因为这里书写不便,故将我的做成图像贴于下方,谨供楼主参考(若图像显示过小,点击可放大)
两张图
解答
母题网,免费学习高中数学,巧解高考题,提分快,方法新。
其实不知道对不对呀
版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。