高考越来越近,同学们的高考数学公式都记下了吗?下面是我分享的高考必备的数学公式,一起来看看吧。
化学高考公式数学函数 高考化学常用公式
化学高考公式数学函数 高考化学常用公式
化学高考公式数学函数 高考化学常用公式
高考必备的数学公式 乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b||a|+|b| |a-b||a|+|b| |a|b=-ba
|a-b||a|-|b| -|a|a|a|
一元二次方程的解 -b+(b2-4ac)/2a -b-(b2-4ac)/2a
根与系数的关系 X1+X2=-b/a X1X2=c/a 注:韦达定理
判别式
2-4ac=0 注:方程有两个相等的实根
2-4ac0 注:方程有两个不等的实根
2-4ac0 注:方程没有实根,有共轭复数根
三角函数公式
两角和公式
in(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
in(A/2)=((1-cosA)/2) sin(A/2)=-((1-cosA)/2)
cos(A/2)=((1+cosA)/2) cos(A/2)=-((1+cosA)/2)
tan(A/2)=((1-cosA)/((1+cosA)) tan(A/2)=-((1-cosA)/((1+cosA))
ctg(A/2)=((1+cosA)/((1-cosA)) ctg(A/2)=-((1+cosA)/((1-cosA))
和化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
inA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和
1+2+3+4+5+6+7+8+9++n=n(n+1)/2 1+3+5+7+9+11+13+15++(2n-1)=n2
2+4+6+8+10+12+14++(2n)=n(n+1) 12+22+32+42+52+62+72+82++n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+n3=n2(n+1)2/4 12+23+34+45+56+67++n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F0
直棱柱侧面积 S=ch 斜棱柱侧面积 S=ch
正棱锥侧面积 S=1/2ch 正棱台侧面积 S=1/2(c+c)h
圆台侧面积 S=1/2(c+c)l=pi(R+r)l 球的表面积 S=4pir2
圆柱侧面积 S=ch=2pih 圆锥侧面积 S=1/2cl=pirl
弧长公式 l=ar a是圆心角的弧度数r 0 扇形面积公式 s=1/2lr
锥体体积公式 V=1/3SH 圆锥体体积公式 V=1/ir2h
斜棱柱体积 V=SL 注:其中,S是直截面面积, L是侧棱长
柱体体积公式 V=sh 圆柱体 V=pir2h
通项公式的求法:
(1)构造等比数列:凡是出现关于后项和前项的一次递推式都可以构造等比数列求通项公式;
(2)构造等数列:递推式不能构造等比数列时,构造等数列;
(3)递推:即按照后项和前项的对应规律,再往前项推写对应式。
已知递推公式求通项常见方法:
①已知a1=a,an+1=qan+b,求an时,利用待定系数法求解,其关键是确定待定系数,使an+1 +=q(an+)进而得到。
②已知a1=a,an=an-1+f(n)(n2),求an时,利用累加法求解,即an=a1+(a2-a1)+(a3-a2)++(an-an-1)的方法。
③已知a1=a,an=f(n)an-1(n2),求an时,利用累乘法求解。
高三数学的复习 一、时间的安排
二、的安排
做什么事情都应该有一个,这也是大家应该学习的一部分,寒很短暂,如果没有,可能会在忙碌中很快过去,同样建议大家把高三的课表整合一下,对各科进行重新的排列,这里应该突出安排自己的薄弱科目。不要指望某一学科,希望用这门课的成绩来弥补“瘸腿”的科目,这是不可能的。数学科还是要每天至少安排一节课,自己对数学各个知识块儿——函数、导数、数列、不等式、平面向量、解析几何、立体几何、概率统计等等的掌握也应有充分的认识,针对自己的薄弱环节,加强复习和练习。对于感觉困难的知识块儿,不应该回避,而应该安排多一些的时间,力争在期中克服它。
三、总结的安排
如何找到自己的薄弱环节,这就要通过很好的总结,总结课上老师讲的例题、课后做的作业、统练中的考题,看看自己在哪个知识上老出错,这就应该是薄弱环节。对于薄弱环节,首先还是要解决基本知识的问题,然后可以和同学讨论一下,向老师(学校会安排答疑时间、网校也有老师值班)请教一下。同时,做完一个题目也应该有一个反思(总结),即:这个题目考察了几个知识点,易错点是什么,与以往做的题目有哪些类似点,变换条件与结论题目还能做吗等等,不一定每道题都反思,但每天反思一道还是必要的,这个过程就是能力提高的过程。
不管是什么科目,都需要做题来积累经验,更别说是以做题为主的数学了。
对于基础知识薄弱的同学来说,首要的就是先掌握基础知识,平时的学习就以课本为主,通过做书上的的习题和例题来巩固基础知识,等掌握了基础,再攻克重点难点。
整理知识点
高中理综数学总共是5本必修,5本选修,所以复习起来比较麻烦,为了复习的时候便于查找,可以把高中数学内容分类归纳,有针对性的复习。
这样一来节省了翻阅书本的时间,还有利于针对自己的薄弱环节进行专项复习。
准备一个笔记本,把自己平时出错的内容都整理上去,每隔一段时间把错题集上的问题解决一下,在高考试前一周专门针对错题集进行复习。这样就能避免之前烦的错误考试时再出现。整理错题集能很大程度提高复习效率。
合理分配考试时间
高中数学理科是10本书,文科是9本书,数学公式非常多,如果基础知识不扎实,平时做题查阅公式就要浪费很多时间。接下来是我为大家整理的高考数学公式 总结 归纳,希望大家喜欢!
高考数学公式总结归纳一
圆的公式
1、圆体积=4/3(pi)(r^3)
2、面积=(pi)(r^2)
3、周长=2(pi)r
4、圆的标准方程(x-a)2+(y-b)2=r2【(a,b)是圆心坐标】
5、圆的一般方程x2+y2+dx+ey+f=0【d2+e2-4f>0】
椭圆公式
1、椭圆周长公式:l=2πb+4(a-b)
2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的.
3、椭圆面积公式:s=πab
4、椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率t,但这两个公式都是通过椭圆周率t推导演变而来。
高考数学公式总结归纳二
乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)
三角不等式|a+b||a|+|b||a-b||a|+|b||a|b=-bab
|a-b||a|-|b|-|a|a|a|
一元二次方程的解-b+(b2-4ac)/2a-b-(b2-4ac)/2a
根与系数的关系x1+x2=-b/ax1_2=c/a注:韦达定理
判别式
b2-4ac=0注:方程有两个相等的实根
b2-4ac0注:方程有两个不等的实根
b2-4ac0注:方程没有实根,有共轭复数根
三角函数公式
两角和公式
sin(a+b)=sinaco+cosasinbsin(a-b)=sinaco-sinbcosa
cos(a+b)=cosaco-sinasinbcos(a-b)=cosaco+sinasinb
tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)
ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)
倍角公式
tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(a/2)=((1-cosa)/2)sin(a/2)=-((1-cosa)/2)
cos(a/2)=((1+cosa)/2)cos(a/2)=-((1+cosa)/2)
tan(a/2)=((1-cosa)/((1+cosa))tan(a/2)=-((1-cosa)/((1+cosa))
ctg(a/2)=((1+cosa)/((1-cosa))ctg(a/2)=-((1+cosa)/((1-cosa))
和化积
2sinaco=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)
2cosaco=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)
sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+co=2cos((a+b)/2)sin((a-b)/2)
tana+tanb=sin(a+b)/cosacotana-tanb=sin(a-b)/cosaco
ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb
某些数列前n项和
1+2+3+4+5+6+7+8+9++n=n(n+1)/21+3+5+7+9+11+13+15++(2n-1)=n2
2+4+6+8+10+12+14++(2n)=n(n+1)12+22+32+42+52+62+72+82++n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+n3=n2(n+1)2/41_+2_+3_+4_+5_+6_++n(n+1)=n(n+1)(n+2)/3
正弦定理a/sina=b/sinb=c/sinc=2r注:其中r表示三角形的外接圆半径
余弦定理b2=a2+c2-2acco注:角b是边a和边c的夹角
圆的标准方程1、(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标
圆的一般方程x2+y2+dx+ey+f=0注:d2+e2-4f0
抛物线标准方程y2=2pxy2=-2p_ 2=2pyx2=-2py
直棱柱侧面积s=c_斜棱柱侧面积s=c_
正棱锥侧面积s=1/2c_正棱台侧面积s=1/2(c+c)h
圆台侧面积s=1/2(c+c)l=pi(r+r)l球的表面积s=4pi_2
圆柱侧面积s=c_=2pi_圆锥侧面积s=1/2__=pi__
弧长公式l=a_a是圆心角的弧度数r0扇形面积公式s=1/2__
锥体体积公式v=1/3__圆锥体体积公式v=1/3_i_2h
斜棱柱体积v=sl注:其中,s是直截面面积,l是侧棱长
柱体体积公式v=s_圆柱体v=pi_2h
抛物线公式
y = ax^2+bx+c 就是y等于ax的平方加上b
a > 0时开口向上
a < 0时开口向下
c = 0时抛物线经过原点
b = 0时抛物线对称轴为y轴
它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0)准线方程为x=-p/2
由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py
面积公式
圆的体积公式 4/3(pi)(r^3)
圆的面积公式 (pi)(r^2)
圆的周长公式 2(pi)r
正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中R表示三角形的外接圆半径
圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
直棱柱侧面积 S=c_ 斜棱柱侧面积 S=c'_
正棱锥侧面积 S=1/2c_' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi_2
圆柱侧面积 S=c_=2pi_ 圆锥侧面积 S=1/2__=pi__
弧长公式 l=a_ a是圆心角的弧度数r>0 扇形面积公式 s=1/2__
锥体体积公式 V=1/3__ 圆锥体体积公式V=1/3_i_2h
斜棱柱体积 V=S'L 注:其中S'是直截面面积L是侧棱长
柱体体积公式 V=s_ 圆柱体V=pi_2h
高考数学公式总结归纳四
高中数学公式 顺口溜 一、《与函数》
内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。
函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;
正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;
求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,
奇母偶子偶函数,偶母非奇偶函数;图象象限内,函数增减看正负。
二、《三角函数》
三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;
中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,
顶点任庖缓扔诤竺媪礁S盏脊骄褪呛茫夯蟠蠡。?nbsp;
变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,
将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,
余弦积减正弦积,换角变形众公式。和化积须同名,互余角度变名称。
计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。
逆反原则作指导,升幂降次和积。条件等式的证明,方程思想指路明。
公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;
1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;
三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;
利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;
三、《不等式》
解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。
高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。
证不等式的 方法 ,实数性质威力大。求与0比大小,作商和1争高下。
直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。
还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。
四、《数列》
等等比两数列,通项公式N项和。两个有限求极限,四则运算顺序换。
数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换,
取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程序好思考:
一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化:
首先验证再定,从K向着K加1,推论过程须详尽,归纳原理来肯定。
五、《复数》
虚数单位i一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。
对应复平面上点,原点与它连成箭。箭杆与X轴正向,所成便是辐角度。
箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。
代数运算的实质,有i多项式运算。i的正整数次慕,四个数值周期现。
一些重要的结论,熟记巧用得结果。虚实互化本领大,复数相等来转化。
利用方程思想解,注意整体代换术。几何运算图上看,加法平行四边形,
减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。
三角形式的运算,须将辐角和模辨。利用棣莫弗公式,乘方开方极方便。
辐角运算很奇特,和是由积商得。四条性质离不得,相等和模与共轭,
两个不会为实数,比较大小要不得。复数实数很密切,须注意本质区别。
六、《排列、组合、二项式定理》
两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。
排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。
不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。
关于二项式定理,杨辉三角形。两条性质两公式,函数赋值变换式。
七、《立体几何》
点线面三位一体,柱锥 台球 为代表。距离都从点出发,角度皆为线线成。
垂直平行是重点,证明须弄清概念。线线线面和面面、三对之间循环现。
方程思想整体求,化归意识动割补。计算之前须证明,画好移出的图形。
立体几何辅助线,常用垂线和平面。射影概念很重要,对于解题最关键。
异面直线二面角,体积射影公式活。公理性质三垂线,解决问题一大片。
八、《平面解析几何》
有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称。
笛卡尔的观点对,点和有序实数对,两者—一来对应,开创几何新途径。
两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。
三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。
四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。
解析几何是几何,得意忘形学不活。图形直观数入微,数学本是数形学。
高考数学公式总结归纳相关 文章 :
1. 高考数学知识点归纳总结
2. 高考数学知识点总结归纳
3. 高考所需数学公式总结
4. 2020高考数学知识点归纳总结大全
5. 2017年高考理科数学公式归纳
6. 高考文科数学公式大全
7. 高考数学知识点总结大全
8. 高考必记数学公式汇总
9. 高考理科数学公式总结
10. 高考数学知识点归纳整理
很多人想知道高三的有哪些吧必背的重要知识点,下面我为大家整理了一些高中数学必背知识,供参考!
高三数学必背公式知识点大全 乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根与系数的关系 X1+X2=-b/a X1X2=c/a 注:韦达定理
判别式
b2-4ac=0 注:方程有两个相等的实根
b2-4ac>0 注:方程有两个不等的实根
b2-4ac<0 注:方程没有实根,有共轭复数根
三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2公式定义依赖于涉及到的特定的形式逻辑,但有如下一个非常典型的定义(特定于一阶逻辑): 公式是相对于特定语言而定义的;就是说,一组常量符号、函数符号和关系符号,这里的每个函数和关系符号都带有一个元数(arity)来指示它所接受的参数的数目。)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2的值是)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 12+23+34+45+56+67+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
直棱柱侧面积 S=ch 斜棱柱侧面积 S=c'h
正棱锥侧面积 S=1/2ch' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pir2
圆柱侧面积 S=ch=2pih 圆锥侧面积 S=1/2cl=pirl
弧长公式 l=ar a是圆心角的弧度数r >0 扇形面积公式 s=1/2lr
锥体体积公式 V=1/3SH 圆锥体体积公式 V=1/ir2h
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=sh 圆柱体 V=pir2h
高考数学答题方法19条规律 1、函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。
3、面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是……;
4、选择与填空中出现不等式的题目,优选特殊值法;
5、求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;
6、恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;
7、圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;
8、求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);
9、求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;
11、数列的题目与和有关,优选和通公式,优选作的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;
12、立体几何问如果是为建系服务的,一定用传统做法完成,如果不是,可以从问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题;
13、导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;
14、概率的题目如果出解答题,应该先设,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;
15、遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;
16、注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;
17、问题优先选择去,去优先选择使用定义;
18、与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成;
19、关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。
1.元素具有①确定性②互异性③无序性
2.表示方法①列举法
②描述法
③韦恩图
④数轴法
3.的运算
⑴A∩(B∪C)=(A∩B)∪(A∩C)
⑵Cu(A∩B)=CuA∪CuB
Cu(A∪B)=CuA∩CuB
4.的性质
⑴n元的子集数:2n
真子集数:2n-1;非空真子集数:2n-2
高中数学概念总结
一、
函数
若A中有n
个元素,则A的所有不同的子集个数为
,所有非空真子集的个数是
。二次函数
的图象的对称轴方程是
,顶点坐标是
。用待定系数法求二次函数的解析式时,解析式的设法有三种形式,即
,和
(顶点式)。
2、
幂函数
,当n为正奇数,m为正偶数,m 3、 函数 的大致图象是 由图象知,函数的值域是 ,单调递增区间是 ,单调递减区间是 。二、 三角函数 以角 的顶点为坐标原点,始边为x轴正半轴建立直角坐标系,在角 的终边上任取一个异于原点的点 ,10、三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;点P到原点的距离记为 ,则si2、如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;n =,cos =,tg =,ctg =,sec =,csc =。 2、同角三角函数的关系中,平方关系是: ,, ,, ;相除关系是: 3、诱导公式可用十个字概括为:奇变偶不变,符号看象限。如: ,= 4、 函数 ,最小值是 ,周期是 ,相位是 ,初相是 ;其图象的对称轴是直线 ,凡是该图象与直线 的交点都是该图象的对称中心。 三角函数 以角 的顶点为坐标原点,始边为x轴正半轴建立直角坐标系,在角 的终边上任取一个异于原点的点 ,点P到原点的距离记为 ,则sin =,cos =,tg =,ctg =,sec =,csc =。 2、同角三角函数的关系中,平方关系是: ,, ,, ;相除关系是: 3、诱导公式可用十个字概括为:奇变偶不变,符号看象限。如: ,= 4、 函数 ,最小值是 ,周期是 ,相位是 ,初相是 ;其图象的对称轴是直线 ,凡是该图象与直线 的交点都是该图象的对称中心。 圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py -b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a 根与系数的关系 X1+X2=-b/a X1X2=c/a 注:韦达定理 判别式 b2-4a=0 注:方程有相等的两实根 b2-4ac>0 注:方程有一个实根 b2-4ac<0 注:方程有共轭复数根 数学的公式是要记但我告诉你个记忆的好方法啊 就是做联系那样你就可以记很多公式. 比如三角的.和化积,积化和.半角公式,公式. 还有椭圆和圆,还有抛物线,双曲线的常用公式. 如果要具体的可以加我的QQ. 最重要的是三角函数和立体几何的向量法那些公式,高考是必考的. 高三数学公式不计其数,主要有: 1、sin(a+b)=sinaco+cosasinbsin(a-b)=sinaco-sinbcosa。 2、cos(a+b)=cosaco-sinasinbcos(a-b)=cosaco+sinasinb。 3、tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)。 4、ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)。 二、倍角公式 1、tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga。 2、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a。 高考数学公式总结归纳三 三、半角公式 1、sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)。 2、cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)。 3、tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa))。 4、ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa))。 四、和化积 1、2sinaco=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)。 2、2cosaco=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)。 3、sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+co=2cos((a+b)/2)sin((a-b)/2)。 4、tana+tanb=sin(a+b)/cosacotana-tanb=sin(a-b)/cosaco。 5、ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb。 五、抛物线 1、抛物线:y=ax_bx+c就是y等于ax的平方加上bx再加上c。 a>0时,抛物线开口向上;a<0时抛物线开口向下;c=0时抛物线经过原点;b=0时抛物线对称轴为y轴。 2、顶点式y=a(x+h)_k就是y等于a乘以(x+h)的平方+k,-h是顶点坐标的x,k是顶点坐标的y,一般用于求值与最小值。 3、抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0)。 4、准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程:y^2=2pxy^2=-2p_^2=2pyx^2=-2py。 高考数学必备公式如下: 1.方程: (1)一元二次方程的解:-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a (2)根与系数的关系:X1+X2=-b/a X1X2=c/a (3)判别式: b2-4ac=0 注:方程有两个相等的实根 b2-4ac>0 注:方程有两个不等的实根 b2-4ac<0 注:方程没有实根,有共轭复数根 2.三角不等式: |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b 3.乘法与因式分解: a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 4抛物线标准方程:y^2=2px.三角函数: (1)两角和公式: sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) (2)倍角公式: tan2A=2tanA/(1-tan2A) ctg2A=(整理错题集ctg2A-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a (3)半角公式: sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA)) (4)和化积: 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB (5)正弦定理:a/sinA=b/sinB=c/sinC=2R (6)余弦定理:b2=a2+c2-2accosB 5.数列前n项和(A~C): A:1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2 B:2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 C:13+23+33+43+53+63+…n3=n2(n+1)2/4 12+23+34+45+56+67+…+n(n+1)=n(n+1)(n+2)/3 6.圆的标准方程 : (x-a)2+(y-b)2=r2 7.圆的一般方程: x2+y2+Dx+Ey+F=0 8.抛物线标准方程: y2=2px y2=-2px;x2=2py x2=-2py 9.面积公式: (1)直棱柱侧面积:S=ch;斜棱柱侧面积:S=c'h (2)正棱锥侧面积 S=1/2ch’ (3)正棱台侧面积:S=1/2(c+c')h' (4)圆台侧面积:S=1/2(c+c')l=pi(R+r)l (5)圆柱侧面积:S=ch=2pih (6)圆锥侧面积:S=1/2cl=pirl (8)锥体体积公式:V=1/3SH(圆锥体体积公式 V=1/ir2h) (9)斜棱柱体积:V=S'L (10)柱体体积公式:V=sh;圆柱体:V=pir2h 希望对您有帮助,谢谢! (1)40% (2)V×1.84×98%=200×24.5% (3)设NaOH溶液中含NaOHx克 2NaOH + H2SO4=Na2SO4 + 2H2O 80------------98 80:98=x:160×24.5% x=32克 32/100=32% 电解槽中NaOH溶液没有达到高浓度标准 慢慢研究根据放的天数,大家要把时间安排好。这个期不同于以往的期,应该以学习为主,放应该看成是在家中上课,建议大家就按照课表上的时间标准,按时上、下课,全天分成上午、下午和晚上三个时间段,数学还是安排在上午。但每门课时间不宜太长,最多不要超过1.5小时。春节期中三天可以放松一下,但不宜长距离的旅行,可在住所周围活动,主要是放松一下心情。吧 漏 一、sinh-1 x dx = x sinh-1 x-+ C。 二、cosh-1 x dx = x cosh-1 x-+ C。 三、tanh-1 x dx = x tanh-1 x+ ln | 1-x2|+ C。 四、coth-1 x dx = x coth-1 x- ln | 1-x2|+ C。 五、sech-1 x dx = x sech-1 x- sin-1 x + C。 六、csch-1 x dx = x c5.函数y=(sinx)/x是偶函数。在(0,π)上单调递减,(-π,0)上单调递增。利用上述性质可以比较大小。sch-1 x+ sinh-1 x + C。 七、sin 3θ=3sinθ-4sin3θ。 八、cos3θ=4cos3θ-3cosθ。 九、→sin3θ= (3sinθ-sin3θ)。 十、→cos3θ= (3cosθ+cos3θ)。 十一、sin (α±β)=sin α cos β ± cos α sin β。 十二、cos (α±β)=cos α cos β sin α sin β。 十三、2 sin α cos β = sin (α+β) + sin (α-β)。 十四、2 cos α sin β = sin (α+β) - sin (α-β)。 十五、2 cos α cos β = cos (α-β) + cos (α+β)。 1、通用格式,用数学符号表示,各个量之间的一定关系(如定律或定理)的式子,能普遍应用于同类事物的方式方法。 2、公式,在数学、物理学、化学、生物学等自然科学中用数学符号表示几个量之间关系的式子。具有普遍性,适合于同类关系的所有问题。在数理逻辑中,公式是表达命题的形式语法对象,除了这个命题可能依赖于这个公式的自由变量的值之外。 错误公式特征: 1、自称是科学的,但含糊不清,缺乏具体的度量衡。 2、无法使用作定义(例如,外人也可以检验的通用变量、属于、或对象)。 3、无法满足简约原则,即当众多变量出现时,无法从最简约的方式求得。 EXCEL公式是EXCEL工作表中进行数值计算的等式。 excel中公式和函数的作用: 1、零存整取收益函数PV。 2、内部平均值函数TRIMMEAN。 3、日期年份函数YEAR。 4、字符提取函数MID。 高中数学必备公式有三大基础函数的解析式,三角函数的诱导公式,三角恒等变换公式,求导公式,向量的运算,数量积公式,积分运算公式,立体几何体积公式,等、等比数列的通项公式、前n项和公式等。 公式一:同角关系 sin(2kπ+α)=sinα k∈z cos(2kπ+α)=cosα k∈z tan(2kπ+α)=tanα k∈z cot(2kπ+α)=cotα k∈z 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系 sin(kπ+α)=-sinα k∈z cos(kπ+α)=-cosα k∈z tan(kπ+α)=tanα k∈z cot(kπ+α)=cotα k∈z 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系 sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α与α的三角函数值之间的关系 sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα 六种基本函数: 函数名:正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数。 正弦函数:sinθ=y/r 余弦函数:cosθ=x/r 正切函数:tanθ=y/x 余切函数:cotθ=x/y 正割函数:secθ=r/x 余割函数:cscθ=r/y 高考数学必考的公式有哪些?数学神级秒杀公式结论都有哪些?下文我给大家整理了高考数学的公式结论,供参考! 数学32条秒杀公式整理 高考数学神级秒杀公式大全 1.函数的周期性问题: ①若f(x)=-f(x+k),则T=2k; ②若f(x)=m/(x+k)(m不为0),则T=2k;若f(x)=f(x+k)+f(x-k),则T=6k。 注意点: a.周期函数,周期必无限 b.周期函数未必存②若f(x)满足f(a+x)=f(b-x)则函数关于直线x=a+b/2成轴对称。在最小周期,如:常数函数。 c.周期函数加周期函数未必是周期函数。 ③关于对称问题 若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2; 函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称; 若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称。 2.函数奇偶性。 ①对于属于R上的奇函数有f(0)=0; ②对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项 3.函数单调性:若函数在区间D上单调,则函数值随着自变量的增大(减小)而增大(减小)。 4.函数对称性: ①若f(x)满足f(a+x)+f(b-x)=c则函数关于(a+b/2,c/2)成中心对称。 6.函数y=(lnx)/x在(0,e)上单调递增,在(e,+∞)上单调递减。另外y=x2(1/x)与该函数的单调性一致。 7.复合函数。 (1)复合函数奇偶性:内偶则偶,内奇同外。 (2)复合函数单调性:同增异减。 8.数列定律。 等数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等。 9.隔项相消。对于Sn=1/(1×3)+1/(2×4)+1/(3×5)+…+1/[n(n+2)]=1/2[1+1/2-1/(n+1)-1/(n+2)] 注:隔项相加保留四项,即首两项,尾两项。 10.面积公式:S=1/2∣mq-np∣其中向量AB=(m,n),向量BC=(p,q)注:这个公式可以解决已知三角形三点坐标求面积的问题! 11.空间立体几何中:以下命题均错。 ①空间中不同三点确定一个平面; ②垂直同一直线的两直线平行; ③两组对边分别相等的四边形是平行四边形; ④如果一条直线与平面内无数条直线垂直,则直线垂直平面; ⑤有两个面互相平行,其余各面都是平行四边形的几何体是棱柱; ⑥有一个面是多边形,其余各面都是三角形的几何体都是棱锥。 12.所有棱长均相等的棱锥可以是三、四、五棱锥。 13.求f(x)=∣x-1∣+∣x-2∣+∣x-3∣+…+∣x-n∣(n为正整数)的最小值。为:当n为奇数,最小值为(n2-1)/4,在x=(n+1)/2时取到;当n为偶数时,最小值为n2/4,在x=n/2或n/2+1时取到。 14.椭圆中焦点三角形面积公式:S=b2tan(A/2)在双曲线中:S=b2/tan(A/2)说明:适用于焦点在x轴,且标准的圆锥曲线。A为两焦半径夹角。 15.[转化思想]切线长l=√(d2-r2)d表示圆外一点到圆心得距离,r为圆半径,而d最小为圆心到直线的距离。 16.对于y2=2px,过焦点的互相垂直的两弦AB、CD,它们的和最小为8p。 17.易错点:若f(x+a)[a任意]为奇函数,那么得到的结论是f(x+a)=-f(-x+a)〔等式右边不是-f(-x-a)〕,同理如果f(x+a)为偶函数,可得f(x+a)=f(-x+a)牢记! 18.三角形垂心定理. ①向量OH=向量OA+向量OB+向量OC(O为三角形外心,H为垂心 ②若三角形的三个顶点都在函数y=1/x的图象上,则它的垂心也在这个函数图象上。 19.与三角形有关的定理: ①在非Rt△中,有tanA+tanB+tanC=tanAtanBtanC ②任意三角形射影定理(又称余弦定理):在△ABC中a=bcosC+ccosB;b=ccosA+acosC;c=acosB+bcosA ③任意三角形内切圆半径r=2S/a+b+c(S为面积)高考数学公式有哪些?
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角数学高考必背重点公式
化学题,详细解法
tan(A/2)=-√((1-cosA)/((1+cosA))高数公式有哪些?
;倒数关系是:数学中的函数公式有哪些?
V=27毫升高考数学32条秒杀公式 高中数学神级秒杀结论
加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。
版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。