《至大论》的作者是_至大至刚之气的理解

学历教育 2025-04-26 10:02:57

托勒密在天文方面有哪些贡献?

托勒密总结了希腊古天文学的成就,写成《天文学大成》十三卷。其中确定了一年的持续时间,编制了星表,说明旋进、折射引起的修正,给出日月食的计算方法等。他利用希腊天文学家们特别是喜帕恰斯的大量观测与研究成果,把各种用偏心圆或小轮体系解释天体运动的地心学说给以系统化的论证,后世遂把这种地心体系冠以他的名字,称为托勒密地心体系。

《至大论》的作者是_至大至刚之气的理解《至大论》的作者是_至大至刚之气的理解


《至大论》的作者是_至大至刚之气的理解


巨著《天文学大成》十三卷是当时天文学的百科全书,直到开普勒的时代,都是天文学家的必读书籍。《地理学指南》八卷,是他所绘的世界地图的说明书,其中也讨论到天文学原则。他还著有《光学》五卷,其中卷讲述眼与光的关系,第二卷说明可见条件、双眼效应,第三卷讲平面镜与曲面镜的反射及太阳中午与早晚的视径大小问题,第五卷试图找出折射定律,并描述了他的实验,讨论了大气折射现象。此外,尚有年代学和占星学方面的著作等。

在古老的宇宙观中,人们把天看成是一个盖子,地是一块平板,平板就由柱子支撑着。

在公元前四到三世纪,对于天体的运动,希腊人有两种不同的看法:一种以欧多克斯为代表,他从几何的角度解释天体的运动,把天上复杂的周期现象,分解为若干个简单的周期运动;他又给每一种简单的周期运动指定一个圆周轨道,或者是一个球形的壳层,他认为天体都在以地球为中心的圆周上做匀速圆周运动,并且用二十七个球层来解释天体的运动,到了亚里士多德时,又将球层增加到五十六个。

另一种以阿利斯塔克为代表,他认为地球每天在自己的轴上自转,每年沿圆周轨道饶日一周,太阳和恒星都是不动的,而行星则以太阳为中心沿圆周运动。但阿利斯塔克的见解当时没有人表示理解或接受,因为这与人们肉眼看到的表观景象不同。

托勒密于公元二世纪,提出了自己的宇宙结构学说,即“地心说”。其实,地心说是亚里士多德的首创,他认为宇宙的运动是由上帝推动的。他说,宇宙是一个有限的球体,分为天地两层,地球位于宇宙中心,所以日月围绕地球运行,物体总是落向地面。

地球之外有9个等距天层,由里到外的排列次序是:月球天、水星天、金星天、太阳天、火星天、木星天、土星天、恒星天和原动力天,此外空无一物。各个天层自己不会动,上帝推动了恒星天层,恒星天层才带动了所有的天层运动。人居住的地球,静静地屹立在宇宙的中心。

托勒密全面继承了亚里士多德的地心说,并利用前人积累和他自己长期观测得到的数据,写成了8卷本的《伟大论》。在书中,他把亚里士多德的9层天扩大为11层,把原动力天改为晶莹天,又往外添加了天和净火天。

托勒密设想,各行星都绕着一个较小的圆周上运动,而每个圆的圆心则在以地球为中心的圆周上运动。他把绕地球的那个圆叫“均轮”,每个小圆叫“本轮”。同时设地球并不恰好在均轮的中心,而偏开一定的距离,均轮是一些偏心圆;日月行星除作上述轨道运行外,还与众恒星一起,每天绕地球转动一周。托勒密这个不反映宇宙实际结构的数学图景,却较为完满的解释了当时观测到的行星运动情况,并取得了航海上的实用价值,从而被人们广为信奉。

在讨论托勒密的历史功绩及影响时,不能不先谈到一些很容易使人误入歧途的成见。这些成见并非学术研究所得出的成果,而是与某些特定时期的宣传活动密切结合在一起。因而广泛流传,其中比较重要的有如下两种。

托勒密的《至大论》,在他身后不久就成为古代西方世界学习天文学的标准教材。公元4世纪就出现了帕普斯的评注本文学和城的塞翁的评注本。约在公元800年出现文译本。随后出现更完善的译本,它们与阿拔斯王朝的哈里发阿尔马蒙对天文学的大力赞助密切联系在一起。1175年,出现了克雷莫纳的杰拉尔德从文译的拉丁文译本,《至大论》开始重新为西欧学者所了解。

在此之前不久,1160年左右还有一个从希腊文本译出的拉丁文译本出现在西西里,但可能不太为人所知。这些译本,连同来自一些以《至大论》为基础的新论著,在13世纪大大提高了西方天文学的水准,而在此前漫长的中世纪时期,西方世界的天文学进展主要出现在世界;然而天文学家更是大大受益于托勒密的天文学著作。

托勒密的天文学著作经学者之手而重为欧洲所知之后,又在欧洲保持了长时间的影响力,至少延续到16世纪。在此之前,没有任何西方的星历表不是按托勒密理论推算出来的。

虽然星历表的程度不断有所提高,但由于托勒密所使用的古希腊本轮–均轮系统具有类似级数展开的功能,即为了增加推算的度,可以在本轮上再加一个小轮,让此小轮之心在本轮上绕行,而让天体在小轮上绕行。只要适当调诸轮的半径、绕行方向和速度,即可达到要求。

从理论上说,小轮可以不断增加,以求得更高的精度,有些天文学家正是这样做的,关于小轮体系的繁琐,是许多宣传性读物中经常谈到的话题,这也成为托勒密的罪状之一,但这在很大程度上是错误的。以体系为例,在《天体运行论》中,仍使用小轮和偏心圆达34个之多(地球3个,月球4个,水星7个,金星、火星、木星和土星各5个)。

托勒密地理学对后世的巨大影响。《地理学》一书在9世纪初叶便有了译本,书中关于帝国疆域内各地记载中的不准确这处,很快被发现并代之以更准确的记述,原初的文译本已经佚失,但此书在地理学中的直接与间接影响是值得注意的。

《地理学》约在1406年出现由J.安杰勒斯从希腊文本译出的拉丁文译本。因为此书即使在当时(在它问世后1200年!)仍是对已知世界总的地理情况的佳指南,所以很快流行起来。直到16世纪,许多制图学在16世纪的进展提供了强大的。托勒密的投影方受到非议,由此导致各种新投影法的问世。

《地理学》中的种投影法在墨卡托1554年的欧洲地图中受到非议,第二种投影法从1511年起受到更多的批评。然而无论如何,托勒密的《地理学》为后人提供了世上早的有数学依据的地图投影法。

现代学者认为,(1451~1506)在开始他那改变人类历史的远航之前,至少曾细心阅读过5本书,其中一本就是托勒密的《地理学》,而其余4本与此不是同类著作,相信通过一条较短的渡海航线,就可以到达大陆的东海岸,结果他在他设想的东岸位置上发现了美洲——尽管他本人直到时仍认为他发现的正是托勒密地图上所绘的大陆。

由此可见,托勒密的《地理学》著作影响之大。

谁知道关于拖勒密

托勒密

一、 生平

托勒密(公元90~168)是古希腊的天文学家、地理学家。约公元90年诞生于埃及的里亚。在公元168年,终年78岁。

二、科学成就

1.托勒密体系作为一种天文学理论有很高的历史地位。 托勒密于公元127年到151年在里亚进行了长期的、大量的天文观测,托勒密把这些天文观测成果和地心体系总结成十三卷巨著《大综合论》,后来文译本改名为《至大论》。托勒密的体系由于较好地容纳了望远镜发现之前的天文观测,所以一直被作为的天文学体系,统治了西方天文学界一千多年。 托勒密的地心体系

2.托勒密的另一巨著是八卷《地理学指南》,书中早提出了类似于现代经、纬度的概念。计算出了几千个地点的地理位置,绘制了包括、欧、亚、非三大洲和太平洋、印度洋、大西洋三大洋的早期世界地图。他已经知道马来半岛和。

用的世界地图是希腊地球绘制师托勒密在2世纪时绘制的。地图上的世界不包括美洋大陆、澳洲或太平洋。

3.托勒密对物理学的重要贡献包括在他的《光学》一书中。他研究了光在平面镜上的反射和光从一种介质进入另一种介质的时候发生折射的现象。托勒密还做了定量的实验,给出了光从空气进入水中的折射数据表,遗憾的是他没有用数学公式把实验结果表达出来,这本来是轻而易举的事情。

三、趣闻轶事:不准确的地图导致的发现

托勒密关于地理位置的计算很不准确,据说他算出的从欧洲横跨大西洋到的距离,比真实距离小得多,这导致哥仑布企图从西班牙向西面驶往印度,结果到了美洲,发现了。

托勒密

托勒密(约公元100—170),古希腊一埃及天文学家、地理学家和数学家。托勒密的地心说统治了欧洲天文界乃至思想界达1400年之久。他出生于托勒密城,一生的大部分时常是在埃及的里亚度过的。当时,古希腊天文学已经经历了一段发展时期,并已经取得了相当的成就。托勒密总结他的研究成果,加上他自己的研究观察,完成了重要的天文学巨著《天文学大成》(又译《大综合论》)。他在该书巾通过系统的几何学证明,建立起宇宙地心体系,即我们通常所说的地心说。这部著作初用古希腊文写成,后来流传到了人手中,公元827年,该书被译成文, 12世纪后半期,传入欧洲,被传译成拉丁文。在元代,该书即传入我国,但直到明末,才在徐光启等人编写的《崇祯历书》有简要介绍。《天文学大成》一书共13卷,分别阐述地和天的概念,基本观测事实和

数学基础。书中论证地为球形,居于宇宙中心.静止不动,其他天体均绕地球运动;还叙述了太阳、月亮、行星运动规律,如何推算日食、月食,确定行星位置等。在地理、物理、数学等方面,托勒密还写了不少著作。

克罗狄斯·托勒密的著作

《天文学大成》(Almagest)十三卷(又名《至大论》、《伟大论》、《大论》、《大综合论》) 《实用天文表》(Handy Tables) 《行星说》(Planetary Hypotheses)二卷。 《恒星之象》(Phases of the Fixed Stars)二卷。 《占星四书》(Tetrabiblos)四卷。 《地理学指南》八卷 《光学》五卷 《日晷论》(Analemma) 《平球论》(Planisphaerium) 《谐和论》(Harmonica)三卷 《体积论》(On Dimension) 《元素论》(On Elements)

克罗狄斯·托勒密的历史功绩

在讨论托勒密的历史功绩及影响时,不能不先谈到一些很容易使人误入歧途的成见。这些成见并非学术研究所得出的成果,而是与某些特定时期的宣传活动密切结合在一起。因而广泛流传,其中比较重要的有如下两种。

迄今为止,科学家已经揭示了多少物质世界的奥秘?

围绕“世界有什么”“世界是如何变成这样的”这两个问题,2004年诺贝尔物理学奖得主维尔切克在《万物原理》中,揭示了十项洞见,告诉人们可以从物理世界的研究中学到哪些基本的原理——了解“发现它们”的思维方式,得到生活上的启示。

维尔切克鼓励人们以“重生婴儿”的姿态重新认识物质世界。他先从空间、时间、物质的构成、万物运动的规律、材料和能源、宇宙的演化、复杂性的出现、感知能力的扩展八个方面介绍了人类已经取得的科学成就,对人工智能、神经生物学等多个领域的发展给出了自己的预测。

与此同时,维尔切克结合自己多年的研究经验,建议人们以互补性的思维方式来看待身处的现实世界——我们从不同的角度思考同一个事物的时候,似乎会发现它同时具有不同的性质,甚至是相互矛盾的性质。维尔切克表示:“这种态度让我大开眼界、受益良多。它真的改变了我的思考方式,并且让我变得更加强大:想象力更加开放,也更加兼收并蓄。”

以下内容经出版方授权节选自《万物原理》一书,内容有删减,标题为摘编者所起。

原文作者丨[美]弗兰克·维尔切克

摘编丨何也

《万物原理》,[美]弗兰克·维尔切克 著,柏江竹、高苹 译,中信出版,2022年1月。

宇宙是一个奇怪的地方。

对新生婴儿来说,世界呈现出一堆杂乱而令人困惑的印象。在整理这些印象的过程中,一个婴儿很快学会了区分来自内部世界和外部世界的信息。内部世界既包括诸如饥饿、痛苦、幸福和困倦的感受,也包括梦中的阴曹地府。这其中也有来自内心的想法,这些想法着她凝视、抓取东西和随后学会说话。

外部世界是通过智力精心构造而成的。婴儿要花大量时间来完成这一建构。她学会通过自己的感知识别出稳定的模式,这些模式不像她自己的身体那样可以对自己的想法做出可靠的反应。她把这些模式整合到物体中,并了解到这些物体的行为有某种可预测性。

终,婴儿长成小孩,开始意识到一些物体是和她自己相似的生物,而且她还可以与之交流。在和这些生物交换信息之后,她确信他们也体验到了内部和外部世界,而且重要的是她和其他生物认识到的许多物体都是相同的,这些物体都遵循相同的规律。

理解如何控制共同的外部世界,即物理世界,在许多方面当然是一个至关重要的实践问题。例如,为了在狩猎采集的 里茁壮成长,小孩必须学会在何处找水,了解哪种植物和动物可以吃,以及如何寻找、养殖或捕猎它们,知道如何准备和烹饪食物,以及许多其他事实和技能。

在更复杂的 里,还会出现别的挑战,例如如何制作专门的工具、如何修建耐用的结构,以及如何记录时间。对于物理世界提出的问题,一代又一代的人发现了成功的解决方案,这些知识被不断分享和积累,成为每个 中的“技术”。

非科学的 常常发展出丰富而复杂的技术。一些技术令人们得以在像北极或卡拉哈里沙漠那样的艰苦环境中繁衍发展,而且至今仍在发挥作用。还有一些技术帮助人们建造了巨大的城市和引人注目的纪念碑,例如埃及和中美洲的金字塔。

但是,在科学方法出现之前的绝大部分人类 历史 中,技术的发展是没有的。成功技术的出现,多多少少都是出于偶然。一旦被偶然发现,它们就以非常具体的程序、仪式和传统的形式被人们所传承。它们并没有形成逻辑体系,人们也没有通过系统的工作来改进它们。

基于经验法则的技术使得人们可以生存、繁衍并时常享受闲暇,过着令人满意的生活。在大多数文化和 历史 中,对大多数人来说,这就足够了。人们无法知道他们错过了什么,也不会知道他们错过的东西可能对他们很重要。

理解世界的现代方法出现在17世纪的欧洲

但是我们现在知道,他们错过了很多。

理解世界的现代方法出现在17世纪的欧洲。早前,在其他地方也出现过科学诞生的先兆,但直到17世纪的欧洲,被称作“科学革命”的一系列鼓舞人心的突破才真正说明了人类心灵创造性地参与到物理世界中能实现什么,而且产生这些突破的方法和态度也为人类未来的 探索 提供了清晰的模型。有了这种推动力,我们所知的科学才真正开始。它再也没有回头。

17世纪,人们在多个前沿学科的理论上和技术上取得了令人激动的进步,包括机械设备和轮船、光学仪器(包括意义重大的显微镜和望远镜)、钟表和历法等。一个直接的结果是,人们可以驾驭更大的力量,看见更多的东西,更可靠地规划事情。但造就了所谓“科学革命”的独特性,并使其名副其实的本质原因,却不那么直接可感。它是一种观念上的改变:一颗新的雄心和一种新的自信。

电影《爱因斯坦与爱丁顿》(2008)剧照。

开普勒、伽利略和牛顿发展的科学方法既保有了尊重事实和向大自然学习的谦逊准则,但这种方法又提倡人们大胆地将所学的知识应用到任何地方,甚至超出了原始证据所在范围。如果它有效,你就发现了有用的东西;如果它无效,你也学到了重要的东西。我将这种态度称作“激进的保守主义”。对我来说,它是“科学革命”的本质创新。

激进的保守主义是保守的,因为它让我们向大自然学习并尊重事实,这是科学方法的关键特征。但它也是激进的,因为它让你拼命把所学到的一切知识外推到别的情况下。这正是科学实际运作的本质,它为科学提供了前沿。

这种新的观念的灵感主要来自一个学科,这个学科甚至在17 世纪就已经有了深厚的传统和良好的发展:天体力学,即描述天空中的物体如何运动的学科。

远在有 历史 记载之前,人们就已经意识到诸如日夜交替、四季循环、月相盈亏和星辰排列的规律。随着农业的兴起,为了在恰当的时间种植和丰收,记录季节变得非常关键。观测天置的另一个强大(但误入歧途)的动机——占星学——来自人类生命与宇宙的节奏直接相连的信念。无论如何,出于各种原因(也包括单纯的好奇),人们仔细地研究了天空。

结果表明,绝大多数星星都以一种合理简单、可预测的方式运动。今天,我们将星星在我们眼中的运动解释为地球绕自己的轴旋转的结果。恒星距离我们太过遥远,所以它们在距离上相对微小的改变对眼都不可见,无论改变来自它们自身的运动还是地球围绕太阳的运动。然而一些例外的天体并不遵循这个模式,它们是太阳、月亮和一些“漫游者”,包括眼可见的水星、金星、火星、木星和土星。

怎样解决世界如何运行的宏大问题?

古代天文学家经过数代人的努力,记录了这些特殊天体的位置,终学会了如何比较地预测它们的变化。这项任务需要进行几何学和三角学计算,遵循复杂但完全确定的方法。托勒密(约100—约170)把这些材料总结到一本叫作《至大论》(Almagest,又译《天文学大成》)的数学著作中——Magest在希腊语中是,意思“伟大的”。它和英语中的majestic(意为“宏伟的”)有相同的词根,Al只是语中的定冠词,类似于英语中的the。

托勒密的综合论述是一个杰出的成就,但它有两个缺点。一是它非常复杂,因而看上去十分丑陋。特别是,用来计算行星运动的方法引入了许多纯粹由拟合计算和观测得到的数字,却没有更深刻的指导性原则将它们联系起来。(1473—1543)注意到其中某些数字的值可以通过惊人的简单方式相互联系在一起。这些神秘的“巧合的”关系可以用几何来解释,前提是我们设地球、金星、火星、木星和土星都以太阳为中心旋转(月球进一步围绕地球旋转)。

托勒密的综合论述的第二个缺点更加直接:它就是不。第谷·布拉赫(1546—1601)做了类似于今天的“大科学”的工作,设计了精密的仪器,花大量的钱修建了一座天文台,大大提高了对行星位置的观测结果的度。新的观测结果与托勒密的预言存在无可置疑的偏。

约翰内斯·开普勒(1571—1630)想创造一个既简单又的行星运动几何模型。他吸收了的想法,并对托勒密的模型做出了其他重要技术变革。尤其是,他允许围绕太阳的行星轨道偏离简单的圆形,代之以椭圆形,以太阳为一个焦点。他也允许行星围绕太阳运转的速率随它们与太阳的距离而变化,变化规律是它们在相同时间内扫过相同的面积。经过这些改革之后,这个系统简单多了,也更准确了。

解释所有的自然规律是一个过于艰难的任务

艾萨克·牛顿(1643—1727)将开普勒的行星运动几何学与伽利略对地球上运动的动力学描述结合在了一起。他证明开普勒的行星运动理论和伽利略的特殊运动理论都可以被理解为某种一般定律的特殊情况,这些一般定律适用于任何时间、任何地点的所有物体。这些一般定律现在被我们称为经典力学的牛顿理论,它不断取得成功,如解释了地球潮汐、预测了彗星轨迹,以及创造了新的工程奇迹。

牛顿的工作令人信服地表明,我们可以通过详细研究简单情形来解决宏大问题。牛顿将这个方法称为分析和综合。它是科学的激进的保守主义的原型。

这是牛顿自己对这个方法的看法:

在我们介绍完牛顿之前,似乎适合再加上另一段引文,这段引文反映了牛顿与他的前辈伽利略和开普勒,以及与所有我们这些追随他们脚步的人之间的亲缘关系:

电影《万物理论》(2014)剧照。

现代信息科学的先锋之一约翰·R.皮尔斯(John R. Pierce)有一段时间上更为新近的引文,漂亮地抓住了现代科学对世界的理解方式与所有其他方法之间的明显异:

皮尔斯深刻地意识到,提高这方面的标准要付出痛苦的代价。它意味着我们丧失了天真。“我们永远无法像希腊哲学家那样理解自然了……我们知道得太多了。”我认为,这个代价也不算太高。无论如何,开弓没有回头箭。

科学所揭示的物理世界的范围,需要“重生”才能发现

不管是可见的宇宙还是人类的大脑,当我们说某种东西很大的时候,我们得问问:相较于何物?自然的参照便是人类日常生活的范围,这是我们自孩提时便建立的个世界模型的背景。而由科学所揭示的物理世界的范围,则需要我们“重生”才能发现。

电影《爱因斯坦与爱丁顿》(2008)剧照。

按照日常生活的标准,外在的世界浩瀚无垠。如果我们在晴朗的晚上仰望繁星点点的夜空,便能直觉到这种外在的丰富。我们无须做任何细致的分析,便能感到宇宙之大远远超越了我们人类的身体以及可能旅行的距离。科学的理解不仅支持这种旷巨之感,而且进一步扩展了它。

世界的这个尺度会让人感到不知所措。法国数学家、物理学家和宗教哲学家布莱兹·帕斯卡(1623—1662)便心怀此念并深受折磨。他写道:“宇宙通过空间囊括了我,吞没了我,使我犹如一个原子。”

这种类似于“寄蜉蝣于天地,渺沧海之一”的哀思是文学、哲学和神学中普遍的主题,它们出现在许多祷词和圣歌中。当我们用尺寸来衡量的时候,这种哀思是人类对自身之于宇宙微不足道的自然反应。

然而尺寸并非全部。我们内在的丰富虽然不那么显而易见,但其深邃渊博较之于外在丝毫不逊。我们从另一个极端自下而上地思考事物,便会发现这一点。微观世界有无垠的空间。在所有事关紧要之处,我们非常之大。

我们小学就学过,物质的基本结构单元是原子和分子。从这些单元来看,一个人的身体是巨大的。一个人的身体里包含的原子数量大概是1028个——1后面跟了28 个0:10 000 000 000 000 000 000 000 000 000。

这个数字远远超过了我们可以设想的范围。我们可以将其命名为“穰”,然后经过一些教学和练习,我们可以学会用它来计算。不过,由于我们可能数到这么大的数,它便压倒了我们基于日常经验的直觉。设想如此多个点远远超出了我们大脑的承载能力。

在明朗无月的夜晚,我们眼可见的恒星数量多也就几千颗。而另一方面,我们体内的原子总数有“一穰”,大概是整个可见宇宙中恒星数量的一百万倍。在这个非常具体的意义上, 可以说有一个宇宙栖居于我们内部。

伟大的美国诗人沃尔特·惠特曼(1819—1892)本能地觉察到了我们内在之大。在他的《自我之歌》中,他写道:“我心胸宽广,包罗万象。”惠特曼对内在之丰富的欢乐赞颂与帕斯卡对宇宙的羡慕一样,都基于客观事实,但前者与我们的实际体验更息息相关。

世界很大,但我们并不小。更准确地说,无论尺度放大还是缩小,都存在丰富的空间。我们不应该仅仅因为宇宙之大就羡慕它。我们亦很大。确切来说,我们大到足以将整个外在宇宙置于思维之中。帕斯卡也从这种洞见中获得了宽慰。在他发出“宇宙通过空间囊括了我,吞没了我,使我犹如一个原子”的哀叹之后,他自我安慰地写道:“通过思想,我囊括了整个宇宙。”

原文作者丨[美]弗兰克·维尔切克

摘编丨何也

编辑丨刘亚光、罗东

导语部分校对丨赵琳

版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。