2022高考数列解题技巧_2022高考数列解题技巧总结

招生章程 2025-05-01 10:16:42

2022全国乙卷理科数学试卷及解析

高考时真遇到这样的事情,你先闭目沉思,然后深呼吸,控制自己的情绪,心里就这么想:反正这一场考试已经这样了,我也别着急了,能做出一个是一个,也许我先把最简单的题目做出来,心态就平和了,头脑就冷静了,再回过头来看刚才这些题目,就找到思路了。所以把刚才遇到挫折的那几个题目放弃,去看其他的题目,而且看其他的题目时,也别指望有大的收获,这样很容易冷静下来,可能很快又找着感觉了。最重要的一点是,你应该这样想:同样的老师、同样的教材,这个题目我既然不会,其他同学也不会轻松的,大家是公平竞争。这样一想,你不就不慌了吗?

十年寒窗标记的生活刻度难以磨灭,伏案苦读也没法用一句“俱往矣”概括,高考注定将是莘莘学子生活之书里浓墨重彩的章节。下面我为大家带来2022全国乙卷理科数学试卷及解析,希望对您有帮助,欢迎参考阅读!

2022高考数列解题技巧_2022高考数列解题技巧总结2022高考数列解题技巧_2022高考数列解题技巧总结


2022高考数列解题技巧_2022高考数列解题技巧总结


1注意审题。把题目多读几遍,弄清这个题目求什么,已知什么,求、知之间有什么关系,把题目搞清楚了再动手答题。

2022全国乙卷理科数学试卷及解析

高考数学解题技巧

1、首先是精选题目,做到少而精。只有解决质量高的、有代表性的题目才能达到事半功倍的效果。然而绝大多数的同学还没有辨别、分析题目好坏的能力,这就需要在老师的指导下来选择复习的练习题,以了解高考题的形式、难度。

3、,题目 总结 。解题不是目的,我们是通过解题来检验我们的学习效果,发现学习中的不足的,以便改进和提高。因此,解题后的总结至关重要,这正是我们学习的大好机会。对于一道完成的题目,有以下几个方面需要总结:

①在知识方面,题目中涉及哪些概念、定理、公式等基础知识,在解题过程中是如何应用这些知识的。②在方法方面:如何入手的,用到了哪些解题方法、技巧,自己是否能够熟练掌握和应用。③能不能把解题过程概括、归纳成几个步骤(比如用数学归纳法证明题目就有很明显的三个步骤)。④能不能归纳出题目的类型,进而掌握这类题目的解题通法(我们反对老师把现成的题目类型给学生,让学生拿着题目套类型,但我们鼓励学生自己总结、归纳题目类型)。

高考数学知识点

、高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。

主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是个板块。

第二、平面向量和三角函数。

重点考察三个方面:一个是划减与求值,,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。

第三、数列。

数列这个板块,重点考两个方面:一个通项;一个是求和。

第四、空间向量和立体几何,在里面重点考察两个方面:一个是证明;一个是计算。

第五、概率审题一定要仔细,一定要慢。我发现数学题经常在一个字、一个数据里边暗藏着解题的关键,这个字、这个数据没读懂,要么找不着解题的关键,要么你误读了这个题目。你在误读的基础上来做的话,你可能感觉做得很轻松,但这个题一分不得。所以审题一定要仔细,你一旦把题意弄明白了,这个题目也就会做了。会做的题目是不耽误时间的,真正耽误时间的是在审题的过程中,在找思路的过程中,只要找到思路了,单纯地写那些步骤并不占用多少时间。和统计。

这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,……等可能的概率,第二………,第三是,还有重复发生的概率。

第六、解析几何。

这是我们比较头疼的问题,是整个试卷里难度比较大,计算量的题,当然这一类题,我总结下面五类常考的题型,包括:

类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法;

第二类我们所讲的动点问题;

第三类是弦长问题;

第四类是对称问题,这也是2008年高考已经考过的一点;

第五类重点问题,这类题时往往觉得有思路,但是没有,

当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。

考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。

高三数学 知识点总结:抽样方法

(抽签法、随机样数表法)常常用于总体个数较少时,它的主要特征是从总体中逐个抽取;

优点:作简便易行

缺点:总体过大不易实行

(1)抽签法

一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。

(2)随机数法

随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数或计算机产生的随机数进行抽样。

分层抽样

定义

一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样。

整群抽样

定义

什么是整群抽样

整群抽样又称聚类抽样。是将总体中各单位归并成若干个互不交叉、互不重复的,称之为群;然后以群为抽样单位抽取样本的一种抽样方式。

优缺点

整群抽样的优点是实施方便、节省经费;

整群抽样的缺点是往往由于不同群之间的异较大,由此而引起的抽样误往往大于简单随机抽样。

实施步骤

先将总体分为i个群,然后从i个群钟随即抽取若干个群,对这些群内所有个体或单元均进行调查。抽样过程可分为以下几个步骤:

一、确定分群的标注

二、总体(N)分成若干个互不重叠的部分,每个部分为一群。

三、据各样本量,确定应该抽取的群数。

四、采用简单随机抽样或系统抽样方法,从i群中抽取确定的群数。

例如,调查中学生患近视眼的情况,抽某一个班做统计;进行产品检验;每隔8h抽1h生产的全部产品进行检验等。

与分层抽样的区别

整群抽样与分层抽样在形式上有相似之处,但实际上别很大。

分层抽样要求各层之间的异很大,层内个体或单元异小,而整群抽样要求群与群之间的异比较小,群内个体或单元异大;

系统抽样

定义

步骤

一般地,设要从容量为N的总体中抽取容量为n的样本,我们可以按下列步骤进行系统抽样:

(1)先将总体的N个个体编号。有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等;

(2)确定分段间隔k,对编号进行分段。当N/n(n是样本容量)是整数时,取k=N/n;

(3)在段用简单随机抽样确定个个体编号l(l≤k);

(4)按照一定的规则抽取样本。通常是将l加上间隔k得到第2个个体编号(l+k),再加k得到第3个个体编号(l+2k),依次进行下去,直到获取整个样本。

★ 2022卷高考文科数学试题及解析

★ 2022年全国乙卷高考语文真题试卷及解析(未公布)

★ 2022高考甲卷数试卷及

★ 2022年全国新高考2卷语文真题及解析

★ 2021年高考全国甲卷数学理科

★ 数学考试试卷及大全

★ 数学考试试卷及大全

高中数学数列解题方法与技巧

当然由易到难并不是说从题一直做到一个,以数学高考题为例,一般数学高考题有三个小高峰:个小高峰出现在选择题的一题,它的难度属于难题的层次;第二个小高峰是填空题的一题,也是比较难的;第三个小高峰出现在大题的一题。

高中数学数列方法和技巧:公式法、倒序相加法、错位相减法。

5、注意计数时利用列举、树图等基本方法;

1、公式法

如一个数列是等数列或等比数列,则求和时直接利用等、等比数列的前n项和公式。留意等比数列公示q的取值要分q=1和q-1。

2、倒序相加法

如一个数列的首末两端等“距离”的两项的和相等,那么求这个数列的前n项和即可用倒序相加法,如等数列的前n项和公式即是用此法推导的。

3、错位相减法

如一个数列的各项和是由一个等数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的。

数列★ 2022全国甲卷文科数学卷试题及一览在数学中的作用:

数列是特殊的函数。它的定义域一般是指非负的正整数,有时也可以为自然数,或者自然数的无限子集。自然数是离散的,数列通常称为离散函数,离散函数是相对定义域为实数或者实数的区间的函数而言的。数列作为离散函数,在数学中有着自己的重要地位。

在高中和大学,除了专门研究数学之外,我们所遇到的函数都是“好的函数”,“好函数”不仅是连续的,而且是可导的,像幂函数、指数函数、对数函数、三角函数等都是好函数,它们具有任意阶导数。数列在研究这些函数中发挥着重要作用。

2022年高考数学必考知识点有哪些

数列的通向公式的求法。

高考数学有哪些必考知识点,哪些考点容易出题?我为同学们带来一些高考数学必考点,希望大家注意!

2022年高考数学高频考点有哪些

高考数学主要知识点

,函数与导数。2022高三提高数学成绩的方法主要考查运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

第二,平面向量与三角函数、三角变换及其应用。这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

第三,数列及其应用。这部分是高考的重点而且是难(3)对于不能立即作答的题目,可一边通览,一边粗略地分为A、B两类:A类指题型比较熟悉、容易上手的题目;B类指题型比较陌生、自我感觉有困难的题目,做到心中有数。点,主要出一些综合题。

第四,不等式。主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。

第五,概率和统计。这部分和我们的生活联系比较大,属应用题。

第七,解析几何。是高考的难点,运算量大,一般含参数。

高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。针对数学高考强调对基础知识与基本技能的考查我们一定要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能。以不变应万变。

高考数学的解题方法有哪些

分层抽样主要特征分层按比例抽样,主要使用于总体中的个体有明显异。共同点:每个个体被抽到的概率都相等N/M。

平时做数学题的速度慢,考试的时候速度会更慢。因为考试比较容易紧张,不仅速度慢,还可能会把自己原本会做的题做错。因此掌握一些数学的解题方法尤为重要。下面是我分享的高考数学的解题方法,一起来看看吧。

3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。

高考数学的解题方法

熟悉基本的解题步骤和解题方法

解题的过程,是一个思维的过程。对一些基本的、常见的问题,前人已经总结出了一些基本的解题思路和常用的解题程式,我们一般只要顺着这些解题的思路,遵循这些解题的步骤,往往很容易找到习题的。

审题要认真仔细

对于一道具体的习题,解题时最重要的环节是审题。审题的步是读题,这是获取资讯量和思考的过程。读题要慢,一边读,一边想,应特别注意每一句话的内在涵义,并从中找出隐含条件。

有些学生没有养成读题、思考的习惯,心里着急,匆匆一看,就开始解题,结果常常是漏掉了一些资讯,花了很长时间解不出来,还找不到原因,想快却慢了。所以,在实际解题时,应特别注意,审题要认真、仔细。

常见函式值域或最值的经典求法

函式值域是函式概念中三要素之一,是高考中必考内容,具有较强的综合性,贯穿整个高中数学的始终.而在高考试卷中的形式可谓千变万化,但万变不离其宗,真正实现了常考常新的考试要求。所以,我们应该掌握一些简单函式的值域求解的基本方法。

学会画图

画图是一个翻译的过程,把解题时的抽象思维,变成了形象思维,从而降低了解题难度。有些题目,只要分析图一画出来,其中的关系就变得一目了然。尤其是对于几何题,包括解析几何题,若不会画图,有时简直是无从下手。

因此,牢记各种题型的基本作图方法,牢记各种函式的影象和意义及演变过程和条件,对于提高解题速度非常重要。

离心率的求值或取值范围问题

将所要研究的问题向极端状态进行分析,使3、证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。

数列求和方法

数列是高中数学的重要内容,又是高中数学与高等数学的重要衔接点,其涉及的基础知识、数学思想与方法,在高等数学的学习中起着重要作用,因而成为历年高考久考不衰的热点题型,在历年的高考中都占有重要地位。数列求和的常用方法是我们在高中数学学习中必须掌握的基本方法,是高考的必考热点之一。此类问题中除了利用等数列和等比数列求和公式外,大部分数列的求和都需要一定的技巧。

高考数学解题时的注意事项

只有解决质量高的、有代表性的题目才能达到事半功倍的效果。然而绝大多数的同学还没有辨别、分析题目好坏的能力,这就需要在老师的指导下来选择复习的练习题,以了解高考题的形式、难度。

2.认真分析题目

解答任何一个数学题目之前,都要先进行分析。相对于比较难的题目,分析更显得尤为重要。我们知道,解决数学问题实际上就是在题目的已知条件和待求结论中架起联络的桥梁,也就是在分析题目中已知与待求之间异的基础上,消除这些异。当然在这个过程中也反映出对数学基础知识掌握的熟练程度、理解程度和数学方法的灵活应用能力。

1在知识方面。题目中涉及哪些概念、定理、公式等基础知识,在解题过程中是如何应用这些知识的。

2在方法方面。如何入手的,用到了哪些解题方法、技巧,自己是否能够熟练掌握和应用。

3能否归纳出题目的型别,进而掌握这类题目的解题方法。

2答题顺序不一定按题号进行。可先从自己熟悉的题目答起,从有把握的题目入手,使自己尽快进入到解题状态,产生解题的 和欲望,再解答陌生或不太熟悉的题目。若有时间,再去拼那些把握不大或无从下手的题。这样也许能超水平发挥。

3数学选择题大约有70%的题目都是直接法,要注意对符号、概念、公式、定理及性质等的理解和使用,例如函式的性质、数列的性质就是常见题目。

4挖掘隐含条件,注意易错易混点,例如 中的空集、函式的定义域、应用性问题的限制条件等。

5方法多样,不择手段。高考试题凸现能力,小题要小做,注意巧解,善于使用数形结合、特值含特殊值、特殊位置、特殊图形、排除、验证、转化、分析、估算、极限等方法,一旦思路清晰,就迅速作答。不要在一两个小题上纠缠,杜绝小题大做,如果确实没有思路,也要坚定信心,“题可以不会,但是要做对”,即使是“蒙”也有25%的胜率。

6控制时间。一般不要超过40分钟,是25分钟左右完成选择题,争取又快又准,为后面的解答题留下充裕的时间,防止“超时失分”。

2022高考数学选择填空题答题模板及方法归纳 答题套路整理

正常情况下,解决一道中等难度的数学选择题,所用的时间是三分钟。解决一道中等难度的数9、注意平均分组、不完全平均分组问题。学主观题,需要十五分钟左右。数学选择题可以用排除法、增加条件法、以小见、极限法、关键点法、对称法、小结论法等。

同学们需要知道,高考试卷不一定全部答完,咱们要的是准确率!学长个人感觉,答题顺序是非常重要的,一般情况下,我建议同学们从前往后做,先做简单题,再做中等题,难题看情况。选择填空题答题模板方法

1.易错点归纳:

九大模块易混淆难记忆考点分析,如概率和频率概念混淆、数列求和公式记忆错误等,强化基础知识点记忆,避开因为知识点失误造成的客观性解题错误。

针对审题、解题思路不严谨如题型未考虑空集情况、函数问题未考虑定义域等主观性因素造成的失误进行专项训练。

2.答题方法:

排除法、增加条件法、以小见、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法;

填空题四大速解方法:直接法、特殊化法、数形结合法、等价转化法。

答题顺序需要留意!

真正高考的时候,同学们都是提3.做好题目总结前进入考场的,试卷在考前十五分钟给大家发下去。同学们一定要利用好这十多分钟的时间,快速浏览试题,判断哪些题不能做?哪些题能做对?

2022高三如何提高数学成绩 有什么方法

仔细分析下面的过程,理解如何一步一步把两个等数列项之比凑出前11项和之比(红色部分)。

课前预习同样是快速提高高中数学成绩的好方法,要知道,课前自学是学生能把新课听的更明白的一个前提,不能把所有的问题都想通过老师来学习,有些学生之所以成绩好就是因为有课前预习的好习惯。当然课前自学是需要有一定的自学能力的,如果暂时没有就一定要先培养,也就是掌握学习的主动权,在质量上有一定的要求,不能一看不会就放弃了。

2022全国乙卷理科数学试题及解析相关 文章 :

2022高三如何提高数学成绩

树立信心,2、注意一问有应用前面结论的意识;减少无用重复题量。

1、有人提起树立数理化都头疼,感觉难无从下手。其实只要把每章节主线抓住,层层递进,成绩能提高很快。

2、不要做太多题,每个公式题型都理解透,灵活利用,而不是做很多题。做很多题会让你产生错觉,知识点很多。其实总结下来根本就没有太多题型。

掌握概念,推导公式。

1、例如学习“函数”首先明确函数概念,然后再把函数延伸出来的概念进行融会贯通。

2、凡是重要的数学公式,就要弄弄明白这个公式是怎么推导的,运用公式的条件是什么。养成推导公式的习惯。只有把公式的来龙去脉搞清楚了,才能更好地运用公式。

及时练习,通过练习加深概念、公式理解,活学活用

、要掌握高中数学知识的基本脉络 :

高中数学主要分为几个部分:1、函数相关内容有:与简易逻辑;函数;数列;三角函数;不等式;导数;复数2、几何相关内容有:直线和圆的方程;圆锥曲线方程;直线、平面、简单几何体3、其他内容有平面向量;排列、组合和概率;概率与统计。

对于概念,公式,如何推导公式等一定要重点弄懂,还有每个知识点后面的例题。老师都会带着大家复习基础知识,跟着老师步骤,老师讲到哪,就去看这部分知识点的内容,所以一定要把握机会扎实基础。

第二、要了解高中数学考试的基本结构:

整体来看,高中数学259个核心考点,120个常考必考题型,每个题型2-3个变式,共475道题目,却占高考卷140分左右的分值,经过轮复习过后,我们对数学知识脉络有了深入了解,接下来就重点突破。

很多考生觉得多做题就行了,还有一些考生进行“题海战术”,每天面对大量的习题,同时也有好像永远都做不完题,结果是成绩没有提升上去,反而失去学习的信心。复习时要列出核心考点,重点突破常考必考题型,掌握各题型变式转化规律,这样复习才能事半功倍效率。

大学数学大题的解题技巧

解题不是目的,我们是通过解题来检验我们的学习效果,发现学习中的不足,以便改进和提高。因此,解题后的总结至关重要,这正是我们学习的大好机会。对于一道完成的题目,有以下几个方面需要总结:

大题是大学数学科目的重要组成部分,也是比分占得很重的一部分,考生需要掌握解题技巧,才能正确答题,下面我给大家带来大学数学大题的解题技巧,希望对你有帮助。

高考数学答题技巧

大学数学大题的解题技巧

一、三角函数题

注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。

二、数列题

1、证明一个数列是等(等比)数列时,下结论时要写上以谁为首项,谁为公(公比)的等(等比)数列;

2、一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的设,否则不正确。利用上设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;

1、证明线面位置关系,一般不需要去建系,更简单;

四、概率问题

1、搞清随机试验包含的所有基本和所求包含的基本的个数;

2、搞清是什么概率模型,套用哪个公式;

3、记准均值、方、标准公式;

4、求概率时,正难则反(根据p1+p2+...+pn=1);

6、注意放回抽样,不放回抽样;

7、注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;

8、注意条件概率公式;

五、圆锥曲线问题

1、注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;

2、注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;

3、战术上整体思路要保7分,争9分,想12分。

3、注意分论讨论的思想;

4、不等式问题有构造函数的意识;

6、整体思路上保6分,争10分,想14分。

大学数学解题思路

1、函数与方程思想

函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。同学们在解题时可利用转化思想进行函数与方程间的相互转化。

2、 数形结合思想

中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此建议同学们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。

3、特殊与一般的思想

用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用。

4、极限思想解题步骤

极限思想解决问题的一般步骤为:一、对于所求的未知量,先设法构思一个与它有关的变量;二、确认这变量通过无限过程的结果就是所求的未知量;三、构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。

大学数学学习方法

1.学习的.心态。

多数中等生的数学成绩是很有希望提升。一方面是目前具备了一定基础,加上努力认真,这种学生态度没有问题,只是缺少方向和适合的方法而已。另一方面,备考时间还算充足,还有时间进行调整和优化。所以平日里多给自己一些积极的心里暗示,坚持不断地实践合适自己的学习方法。

2.备考的方向。

题型和知识点都是有限的,只要我们根据常考的题型,寻找解1,列举归纳法,求出数列的前面几项后找规律先得到通项公式,在数学归纳法证明。题思路并合理的训练,那么很容易提升自己的数学成绩。

3.训练的方式。

每个人实际的情况不一样,训练的方式也不不同,考试中取得的好成绩都是考前合理训练的结果。很多学生抱怨时间不足,每天做完作业以后,身心疲惫。面对一堆题目,特别是数学题,可以注重以下几个角度:

(1)弄清楚自己的需要。例如拿到老师布置的作业,无论是试卷还是课本习题,如果带着情绪做,那么效果肯定不好。首先要弄清自己的需要,比如这些题目中哪些题目质量好?哪些是你还没有弄懂的?哪些是以前常出现的?哪些是你肯定会做的等等,你最想解决哪题?

(2)制定目标。如果应付老师来做题无疑导致做题质量不高,那么在做题之前应该制定一定目标,如上面说的那样,你通过哪些题目来训练正确率?通过哪些题目来练习速度?通过哪些题目来完善步骤等等。有了目标,更好的实现目标,在这个过程中,你肯定有很多收获

2022新高考数学多选题如何评分

分层抽样的样本是从每个层内抽取若干单元或个体构成,而整群抽样则是要么整群抽取,要么整群不被抽取。

新高考数学共4道多选题,评分标准是每题满分5分,全部选对得5分,部分选对得2分,有错选或不选的得0分.每道多选题共有4个选项,正确往往为2项或3项。

提前预习,有助于提高学习效率。

数学多选题答题技巧

多选题的选项在没有十足把握的情况下,要做到“宁缺毋滥”。你只有把一道多选题的正确选项全选对,才能得到这道多选题的满分(5分)。而如果正确选项有多个,哪怕你只选了正确选项中的任何一个,都可以得到2分。但是,如果你选的选项中有错误选项,哪怕只有一个错误的选项,也只能得0分。

在这种情况下,除非你有十足的把握,否则还是“宁缺毋滥”地只选择你把握的选项,以免造成出现错误选项而不得分的遗憾情况。如果自己实在把握不准,就只要选一个自己认为的正确几率的选项。因为这样做,不但能保证我们可能地得到那2分,而且还会避免因为出现多选、错选而不得分的情况。

每道多选题的正确选项中,最多选4个,最少选2个。“最多选4个”选项正确,这句话很好理解。因为每道多选题的选项都是有4个,既然是多选题,那么正确选项的个数最多也只能是4个全对。

高考数学选择题解题技巧

1.特值检验法: 对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

2.极端性原则: 将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。

3.(抽签法简单易行,适用于总体中的个数不多时。当总体中的个体数较多时,将总体“搅拌均匀”就比较困难,用抽签法产生的样本代表性的可能性很大)剔除法: 利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的,从而达到正确选择的目的。这是一种常用的方法,尤其是为定值,或者有数值范围时,取特殊点代入验证即可排除。

6.顺推法: 利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。

7.逆推验证法: 将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。

高考数学选择题获得满分的技巧有哪些

1.精选题目,避免题海战术

高考数学一共有12道选择题,每道5分,总共60分,光选择题就占了高考数学成绩的三分之一还多,所以高考数学想要好,选择题肯定不能丢分。下面是我分享的高考数学选择题拿满分的技巧,一起来看看吧。

高考数学选择题拿满分的技巧

排除选项法

选择题因其是四选一,必然只有一个正确,那么我们就可以采用排除法,从四个选项中排除掉易于判断是错误的,那么留下的一个自然就是正确的。

赋予特殊值法

通过猜想、测量的方法,直接观察或得出结果

这类方法在近年来的高考题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、 总结 、归纳等过程使问题得解。

将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何、立体几何上面,很多计算步骤繁琐、计算量大的题,采用极端性去分析,就能瞬间解决问题。如下题,直接取ab⊥cd的极端情况,取ab中点e,cd中点f,连结ef,令ef⊥ab且ef⊥cd,算出的值即值,无须过多说明。

顺推法

利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。如下题,根据题意,依次将点代入函数及其反函数即可。

5.逆推验证法(代入题干验证法):将选项代入题干进行验证,从而否定错误选项而得出正确的方法。常与排除法结合使用;如下题,代入x=0,显然符合,排除ad;代入x=-1显然不符,排除c。选b。

数形结合法

由题目条件,做出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。如下题,作图后直接得出选项a符合。

递推归纳法

通过题目条件进行推理,寻找规律,从而归纳出正确的方法,例如分析周期数列等相关问题时,就常用递推归纳法。如下题,找找规律即可分析出。

特征分析法

对题设和选择项的特点进行分析,发现规律,归纳得出正确判断的方法。如下题,如果不去分析该几何体的特征,直接用一般的割补方法去做,会比较头疼。细细分析9:检查试卷,其实该几何体是边长为2的正方形体积的一半,如此这般,不用算都知道选c。

估算法

有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。如下题,这种没办法解的方程,只能通过估算求解。当然,在可以使用计算器的情况下,估算也可以也,使用table 或者solve功能,可计算约等于0.42。

做选择题时注意各种方法的运用,比较简单的自己会的题正常做就可以了,遇到比较复杂的题时,看看能否用做选择题的技巧进行求解,一般可以综合运用各种方法,达到快速做出选择的效果。填空题也是,比较简单的会的就正常做,复杂的题如果是一个确定的值时,看能否用特殊值代入法以及特例求解法。选择填空题的答题时间要自己掌握好,遇到不会的先放下往后答,我们的目标是把卷子上所有会的题都答上了、都答对了,审题要仔细(一个字一个字读题),计算要准确(一步一步计算),千万不要有马虎的地方。

1:充分利用考前五分钟

按照大型的考试的要求,考前五分钟是发卷时间,考生填写准考证。这五分钟是不准做题的,但是这五分钟可以看题。我发现很多考生拿到试卷之后,就从个题开始看,我给大家的建议是,拿过这套卷子来,这五分钟是用来制定整个战略的关键时刻。之前没看到题目,你只是空想,当你看到题目以后,你得利用这五分钟迅速制定出整个考试的战略来。

2:进入考试阶段先要审题

现在有些学生,好不容易遇到一个会做的题目,就快速地把会做的题目做错,争取时间去做不会做的题目。殊不知,前面的选择题和后边的大题,难易距是很大的,但是分值的含金量是一样的,有些学生以为前边题目的分数不值钱,后边大题的5.递推归纳法: 通过题目条件进行推理,寻找规律,从而归纳出正确的方法。分数才值钱,不知道这是什么心理。所以我希望学生在考试的时候,一定要培养自己一次就做对的习惯,不要指望腾出时间来检查。越是重要的考试,往往越没有时间回来检查,因为题目越往后越难,可能你陷在那些难题里面出不来,抬起头来的时候已经开始收卷了。

4:要由易到难

一般大型的考试是要有一个铺垫的,比如说前边的题目,往往入手比较简单,越往后越难,这样有利于学生正常的发挥。1979年的高考,数学就吓倒了很多人。它个题就是一个大题,很多学生就被吓蒙了,于是整个考试考得一塌糊涂,就出现一些心态的不稳。所以后期,就因为这样的一些性的试题的出现,不能让一个学生正常发挥,我们在命题的时候一般遵循由易到难的规律,先让学生慢慢地进入状态,再去慢慢地加大难度。有些学生自以为水平很高,对那些简单的题目不屑一顾,所以干脆从一个题开始做,这种做法风险太大。因为一个题一般来讲,难度都很大,你一旦在这个地方卡壳,不仅耽误了你的时间,而且会让你的心情受到很大的影响,甚至影响整场考试的发挥。

当然由易到难并不是说从题一直做到一个,以数学高考题为例,一般数学高考题有三个小高峰:个小高峰出现在选择题的一题,它的难度属于难题的层次;第二个小高峰是填空题的一题,也是比较难的;第三个小高峰出现在大题的一题。我说由易到难,是说要把握住这三个小高峰。

5:控制速度

平常有学生问我:“我在做题的时候多长时间做一个选择题,多长时间做一个填空题,才是比较合理的呢?” 我觉得这个不能一概而论,应该说你平常用什么样的速度做题,考试的时候就用什么样的速度,不要人为地告诉自己,考试的时候要加快速度。其实你考试的时候,速度要是和平常训练的速度距比较大的话,很可能因为你速度一加快,反而导致了质量的下降。一场大型的考试,你会做的题目本身就那么多,如果你加快速度,结果把会做的题目做错,而你腾出的时间去做后边的难题,又长时间地解不出来,那么很可能造成会做的题目得不着分,不会做的题目根本不得分。不要担心“做慢了,做不完”,把握住一点,一个学生的正常考试,如果始终在自己会做的题目上全神贯注的话,这场考试一定是正常发挥的,甚至是超水平发挥。你一直投入到会做的题目中,按照你平常训练的速度,踏踏实实地往前推进。即使你发现时间到了,后边还有题目可能会做但来不及了,我也不认为这是一个令你后悔的结果。结果出来你会发现,你得到的分数往往会比你的实际水平要高。所以考试的时候要控制速度,我觉得这是考试技巧的一个很重要的方面。

6:抓住得分点

考数学时,有人考完以后说某个大题能得满分,结果却并非如此。一个大题12分,结果呢他这儿扣点儿那儿扣点儿,只能得个八九分。学生还觉得挺委屈的,这个题明明会做,怎么被扣分了呢?其实是过程出问题了,数学解题的步骤是有分数的,而且这个分数还有比较明确的界定。学生在考试的时候,一定注意这些学科评分的得分点。比如让你求出一个椭圆的方程,你可能不会求,但你只要写上“解:设所求椭圆的方程为x2/a2+y2/b2=1”,就很可能得1分,这1分是不需要任何付出的。你要解数学应用题的时候,你做完了,你得写上“答:以上结果是什么”,要是没有这句话就被扣分了。

7:不会也能得3分

大型考试的那个难题可用四个字概括——防不胜防。这不是正常人做的题目,正常人也别指望在这个题上能够有多大的收获。因此高考时,不必费力去做一题,但绝不是说这个难题就不能得分。你应该有什么心态呢?反正这个题,我也不想做你,那我还怕你吗?无知者无畏,你一不怕它,反而就有勇气了。我也不要求多得分,能得个三四分就行了。可能你突然发现这个题,解出来比较难,但要想得三四分还是比较容易的。我在平常训练学生的时候,有一句话就是“不会也能得3分”。

8:防止慌场

所谓慌场,就是考试的时候,本来以为这个题对自己来讲难度不大,结果一看道题,当头一棒,怎么也找不着感觉。干脆把题放过去,再看第二题,发现第二题更难。连续碰上这么几个难题,心里就慌了。这一慌,脑子出现一片空白,本来会做的题目也不会做了。这种现象称为慌场,几乎每个学生都会遇到这样的现象。

考完以后千万别急着离开考场。考完试之后一定要检查一下,你的试卷集中了没有,一卷、二卷是不是都交齐了。很多考试,包括高考,经常会有老师把学生的卷子收走了,却把答题卡落下了,或者本来五张试卷,只收了四张。还有些考生考完了,把卷子放到桌面上走了,结果下一场来考试的时候,突然发现还有一张卷子没收。这还是比较幸运的,交给老师以后,大不了老师受点,学生的卷子还没丢。但是你仔细想一想,要是你下一场没发现落下试卷,人家五张卷子,你只有四张卷子,受损失的是你本人。所以考完试以后,不要急于离开考场,要确认该交的卷子都被老师收走了以后再离开。

高考数学各题型的解题技巧

一、三角函数题

注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。

二、数列题

1、证明一个数列是等(等比)数列时,下结论时要写上以谁为首项,谁为公(公比)的等(等比)数列;

2、一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的设,否则不正确。利用上设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;

1、证明线面位置关系,一般不需要去建系,更简单;

四、概率问题

1、搞清随机试验包含的所有基本和所求包含的基本的个数;

2、搞清是什么概率模型,套用哪个公式;

3、记准均值、方、标准公式;

4、求概率时,正难则反(根据p1+p2+...+pn=1);

6、注意放回抽样,不放回抽样;

7、注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;

8、注意条件概率公式;

五、圆锥曲线问题

1、注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;

2、注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;

3、战术上整体思路要保7分,争9分,想12分。

3、注意分论讨论的思想;

4、不等式问题有构造函数的意识;

版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。