下面是以全国二卷进行的分析,全国一卷和三卷与二卷相比基本相同,异不是太大,只是个别考点的侧重点有所异。
2017年高考导数考点_2017年高考导数考点分析
2017年高考导数考点_2017年高考导数考点分析
2015-2017年全国卷II数学(理)各模块分值占比(总分450分)
在解答题中,第17题考查解三角形或数列,第18题考查统计概率或立体几何,第19题考查立体几何或统计概率,第20题考查解析几何或导数,第21题考查导数或解析几何,第22题考查坐标系与参数方程,第23题考查不等式选讲。
2015-2017年全国卷II数学(文)各模块分值占比(总分函数是贯穿中学数学的一条主线,近几年对函数的选择题从难度上讲是比其他类型题目降低了,但知识覆盖面广,要求解题熟练、准确、灵活、快速。选择题的解题思想,渊源于选择题与常规题的联系和区别。它在一定程度上还保留着常规题的某些痕迹。考察既全面又深入,保持了较高的内容比例,并达到了一定深度。题型分布总体趋势是四道小题一道大题,题量稳中有变,但分值基本在35分左右。选填题覆盖了函数的大部分内容,如函数的三要素,函数的四性(奇偶性、单调性、周期性、对称性)与函数图像、常见的初等函数,反函数等。小题突出考察基础知识,大题注重考察函数的思想方法和综合应用。450分)
试题难度略有下降,整体侧重运算,渗透数学文化并注重数学应用。比如说第3题,类似于2019年的第4题,考查比值,对学生阅读理解能力以及计算能力要求较高;第4题,类似于全国Ⅲ第3题,考查概率;第10题、第16题考查数列知识点,特别是第16题,侧重考查学生对数列的奇偶讨论,对文科生来说难度较大;第12题,考查立体几何中球内接三棱锥问题,计算难度不大,但难点在于画出立体图形。
新课标删减的知识点有:分式不等式(只看成二次不等式的应用)函数与导数,平面向量与三角函数、三角变分离参数是指对已知恒成立的不等式在能够判断出参数系数正负的情况下,根据不等式的性质将参数分离出来,得到一个一端是参数,另一端是变量的不等式,只要研究变量不等式的最值就可以解决问题。换及其应用,数列及其应用,不等式。主要考查不等式的求解和证明,概率和统计,空间位置关系的定性与定量分析,解析几何
第七:押轴题高频考点是:三角函数;立体几何;数列;不等式;函数与方程;解析几何;概率与统计;
我认为高考导数比较难。高考数学导数是我们高考的必考内容,而且考点占比很多,想要都吃透并没有那么容易,但是题型无论怎么变,其实都万变不离其宗,都是有它固定的解题模板的。
每一年的高考过后,最受大家关注的就是数学考试。为什么这么说呢?我想大家都记得2003年的高考数学吧,也正是因为那一年江苏卷从此名震江湖。下面是我整理的2017年江苏高考数学难易程度,大家一起看下是否还是当年的水准。掌握到一类题型的解题规律,其实很重要,为什么说导数比较难呢,因为它常常和函数的知识联系到一起,也总是一起去考,所以,导数题型的综合能力就比较强。
数列与极限是高中数学重要内容之一,也是进一步学习高中数学的基础,每年高考占15%。高考以一大一小两题形式出现,小题主要考察基础知识的掌握,解答题一般为中等以上难度的压轴题。由于这部分知识处于交汇点的地位,比如函数、不等式,向量、解几等都与它们有密切的联系,因此大题目具有较强的综合性与灵活性和思维的深刻性。可以根据以下查看自己所不会的;
1、单调性问题
研究函数的单调性问题是导数的一个主要应用,解决单调性、参数的范围等问题,需要解导函数不等式,这类问题常常涉及解含参数的不等式或含参数的不等式的恒成立、能成立、恰成立的求解。由于函数的表达式常常含有参数,所以在研究函数的单调性时要注意对参数的分类讨论和函数的定义域。
2、分离参数构造法
3、利用导数研究切线问题
关键是要有切点横坐标,以及利用三句话来列式。具体来说,题目必须出现切点横坐标,如果没有切点坐标,必须自设切点坐标。然后,利用三句话来列式:①切点在切线上;②切点在曲线上;③斜率等于导数。用这三句话,百分之百可以解答全部切线问题。
4、导数在函数极值中的应用
利用导数的知识来求函数极值是高中数学问题比较常见的类型。利用导数求函数极值的一般步骤是:(1)首先根据求导法则求出函数的导数;(2)令函数的导数等于0,从而解出导函数的零点;(3)从导函数的零点个数来分区间讨论,得到函数的单调区间;(4)根据极值点的定义来判断函数的极值点,再求出函数的极值。
2.三角函数
由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。3.立体几何
承载着空间想象能力,逻辑推理能力与运算能力考察的立体几何试题,在历年的高考中被定义于中低档题,多是一道解答题,一道选填题;解答一般与棱柱,棱锥有关,主要考察线线与线面关系,其解法一般有两种以上,并且一般都能用空间向量方法来求解。
4.数列与极限
直线与圆的方程,圆锥曲线的定义、标准方程、几何性质是支撑解析几何的基础,也是高考命题的重点,以下三个小题一道大题的形式出现约占30分。客观题主要考察直线方程,斜率、两直线位置关系,夹角公式、点到直线距离,圆锥曲线的标准方程,几何性质等基础知识。解答题为难度较大三角部分是高中数学的传统内容,它是中学数学重要的基础知识,因而具有基础性的地位,同时它也是解决数学本身与其它学科的重要工具,因此具有工具性。高考大部分以中低档题的形式出现,至少考一大一小两题,分值16分左右,其中三角恒等变形、求值、三角函数的图象与性质,解三角形是支撑三角函数的知识体系的主干知识,这无疑是高考命题的重点。的综合压轴题。解析几何融合了代数,三角几何等知识是考察学生综合能力的绝好素材。
大体可分为五部分: 一.代数部分:1.2.不等式3.逻辑4.函数5.根式,指数式与对数式6.数列与数学归纳法7.三角函数8.向量及其运算9.排列,组合及二项式定理10.复数 二.平面解析几何:1.直线2.方程与曲线3.圆4.圆锥曲线 三.立体几何:1.直线平面2.球3.多面体4.圆柱,圆锥与圆台5.有关公式 四.概率与统计1.随机变量2.抽样方法3.总体分布的估计4.标准正态分布表 五.极限与导数1.数列极限2.函数极限3.导数 好辛苦的,都是我一个一个字码出来的,希望对你有所帮助
在近十年的高考中,导数综合解答题常常作为压轴之作.这类题由于其解答的方法灵活,没有固定的解题套路,对学生的综合能力要求较高,难度往往很大,得分率极低。下面是我为你整理关于高考函数导数解题方法的内容,希望大家喜欢!
高考函数导数解题方法
高考数学小题答题技巧
而另一方面,选择题在结构上具有自己的特点,即至少有一个(若一元选择题则只有一个)是正确的或合适的。因此可充分利用题目提供的信息,排除迷惑支的干扰,正确、合理、迅速地从选择支中选出正确支。选择题中的错误支具有两重性,既有干扰的一面,也有可利用的一面,只有通过认真的观察、分析和思考才能揭露其潜在的暗示作用,从而从反面提供信息,迅速作出判断。
由于我多年从事高考试题的研究,尤其对选择题我有自己的一套考试技术,我知道无论是什么科目的选择题,都有它固有的漏洞和具体的解决办法,我把它总结为:6大漏洞、8则。
“6大漏洞”是指:
有且只有一个正确;不问过程只问结果;题目有暗示;有暗示;错误有严格标准;正确有严格标准;
“8大原则”是指:(5)零点问题。
1.特值检验法:
对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
2.极端性原则:
将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。
3.剔除法:
利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的,从而达到正确选择的目的。这是一种常用的方法,尤其是为定值,或者有数值范围时,取特殊点代入验证即可排除。
4.数形结合法:
5.递推归纳法:
通过题目条件进行推理,寻找规律,从而归纳出正确的方法。
6.顺推解除法:
利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。
7.逆推验证法(代入题干验证法):
8.正难则反法:
9.特征分析法:
对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。
10.估值选择法:
总结:高考中的选择题一般是容易题或中档题,个别题属于较难题,当中的大多数题的解答可用特殊的方法快速选择。例如:估值选择法、特值检验法、顺推解除法、数形结合法、特征分析法、逆推验证法等都是常用的解法.解题时还应特别注意:选择题的四个选择支中有且一个是正确的,因而在求解时对照选择支就显得非常重要,它是快速选择、正确作答的基本前提。
高考数学答题殊技巧
一、按部就班的解题方法。
2.筛选法(排除法)去伪存真,筛除一些较易判定的的、不合题意的结论,以缩小选择的范围,再从其余的结论中求得正确的。如筛去不合题意的以后,结论只有一个,则为应选项。
3.特殊值法根据中所提供的信息,选择某些特殊情况进行分析,或某些特殊值进行计算,或将字母参数换成具体数值代入,或将比例数看成具体数带人,总之,把一般形式变为特殊形式,再进行判断往往十分简单。
4.验证法(代入法)将各选项逐个代入题干中,进行验证、或适当选取特殊值进行检验、或采取其他验证手段,以判断选择支正误的方法。5.图象法可先根椐题意,作出草图,然后参照图形的作法、形状、位置、性质,综合图象的特征,得出结论。
6.试探法综合性较强、选择对象比较多的试题,要想条理清楚,可以根据题意建立一个几何模型、代数构造,然后通过试探法来选择,并注意灵活地运用上述多种方法。
8.特征法(对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法)。根据题干的特征,又加上做了那么多的题,一看题的特征再一看选项,条件反射,就能选出,但还要按部就班地去做用验证法得正确。利用选项之间的关系,即利用干扰选项做题。选择题除了正确外,其他的都是干扰选是的。项,除非是乱出的选项,否则都是可以利用选项的干扰性做题。
一般出题者不会随意出个选项,总是和正确有点关系,或者是可能出错的结果,我们就可以借助这个命题过程得出正确的结论。如两个选项意思完全相反,则两个之间必有正确。四个选项中有一个选项不属于同一范畴,那么,余下的三项则为选择项。如有两个选项不能归类时,则根据优选法选出其中一个选项作为自己的选择项。只有一个,且是与其它选项比出来的。利用题干与选项的联系。选择题必定考察课本知识,做题过程中,可以判断和课本哪个知识相关?那个选项与这个知识点无关的可立即排除,与题干联系不太紧密的大半排除,答非所问的立即排除。
9.联想法(同似法)(归结法)直接法的变形法有时一读到题就有种做过的感觉,那么此时,你就联想以前做过的题和总结的结论,看是否相同伙相似,寻找联系及区别,此时要严谨,千万不能出现思维错误思维定势,不能不多就是它了
10.估值法有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。
猜你感兴趣:
1. 高考数学函数与导数易错知识点汇总
3. 2017高考数学函数与导数专项练习题及
4. 高三数学函数与导数复习
5. 高中数学常用导数公式
2017年江苏高考数学难度 2003年,据说当年的高考数学江苏卷被人盗走,有泄题风险,于是特地用了当年的“替补卷”,这一张数学试卷的主出题人,是葛军老师,后来他也被被大家称为“高考数学帝”。同样的10年高考数学,江苏卷葛军再次参与出题。为什么把这两年一起讲呢?因为这两年的江苏卷,难度突然飙升,给考生们杀了个措手不及。
二、解题技巧。选择题只管结果,不管中间过程,因此在解题过程中可以大胆的简化中间过程,但简化毕竟是简化,数学是一门具有高度精密逻辑性的严谨的科学,没有充分的依据,所有的条件反射都是错误的,只有找到对的依据、逻辑思维过程、验证,才可确定,“做题不可以凭印象来,凡‘不多就是’的都是错误的,无十足把握的都是错误的”。选择题毕竟是简单的甚至可以口算的,思路也是简单的,如果没思路、做不下去或觉得复杂,或者发现做的时候需要大量计算的时候,可以明确的告诉自己,你的方向错了,可以换一种思路了。后来几年的高考数学,虽然江苏卷依然难度比全国各省试卷都要大一些,但是没有再出现过这样的情况。不过今年确实情况堪忧,不少考生再次哭着走出考场,有学霸称考试太难,草稿纸点不够,尽全力填补了试卷空白,不知结果如何。
:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节老师闻此情况,特地把2017全国高考数学做了一个难度整理,认真评比之后认为,实际上今年的江苏卷和浙江卷难度不相上下,但是相比03年和10年情况还是要好很多。
高考数学答题注意事项 1、抓住重点内容,注重能力培养
高中数学主体内容是支撑整个高考数学最重要的部分,也是进入大学必须掌握的内容,这些内容都是每年高考数学必考且重点考的。象关于函数(含三角函数)、平面向量、直线和圆锥曲线、线面关系、数列、概率、导数等,把它们作为复习中的重中之重来处理,要一个一个专题去落实,要通过对这些专题的复习向其他知识点辐射。
2、关心教育动态,注意题型变化
由于新增内容是当前生活和生产中应用比较广泛的内容,而与大学接轨内容则是进入大学后必须具备的知识,因此它们都是高考必考的内容,因此一定要把诸如概率与统计、导数及其应用、推理与证明、算法初步与框图的基本要求有目的的进行复习与训练。一定要用新的教学理念进行高三数学教学与复习,
3、细心审题、耐心答题,规范准确,减少失误
计算能力、逻辑推理能力是考试大纲中明确规定的两种培养的能力。可以说是学好数学的两种最基本能力,在数学试卷中的考查无处不在。并且在每年的阅卷中因为这两种能力不好而造成的失分占有相当的比例。所以我们在数学复习时,除抓好知识、题型、方法等方面的教学外,还应通过各种方式、机会提高和规范学生的运算能力和逻辑推理能力。
高中数学有3002知识点
在里面重点考察两个方面:一个是证明;一个是计算。清北助学团队的邱崇学长研究高考真题发现,高中数学知识点共3002个,但高考必考常考题考点共259个,其中核心考点84个,经过反复测试和运用,涵盖了第五:概率和统计所有选填题型。其中有20多个方法连任何基础都没有的小白,也能在1分内学会。
必修课程由5个模块组成:必修1:、函数概念与基本初等函数(指、对、幂函数)必修2:立体几何初步、平面解析几何初步。必修3:算法初步、统计、概率。必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。必修5:解三角形、数列、不等式。
三角函数:有关概念、同角关系与诱导公式、和、、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用;平面向量:有关概念与初等运算、坐标运算、数量积及其应用;不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、不等式、不等式的应用;
直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系;圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用;直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量;
高考复习要注意的七大题型:
第二:平面向量和三角函数
重点考察三个方面:一个是划减与求值,,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。
第三:数“动态”立几是近几年来高考立体几何中注入的新血液,常考常新。其特点一是落实基本知识与基本思想方法,其二是注重立几知识与其它知识(如解析几何、函数、不等式、导数、三角函数等)的有机结合。随着新课程的改革,今后高考命题中应会适当增加关于“动态”立体几何的问题。列
数列这个板块,重点考两个方面:一个做导数题要细心一定要看看题目中有无lnx,log之类的别忘了看有无lnx,log之类的因为如果有lnx,log,x要>0还要细心地是分母不等于0还有很多导数选择题要看看能不能判断出奇函数还是偶函数一旦判断出来,离最终就近了一大步很多导数选择题要构造函数才能解出导数解答题一般要考虑分类讨论,如果是求单调区间,取值范围就只能用区间表示,不能用表示。对原函数求导前先看看能不能化简,先化简在求导可以省很多时间计算粗心率也大大减少也有很多导数题要求导2次如果函数中有一个未知数,一般将这个未知数捞出比如f(x)=ax?-3x+1>0应该化为a>3/x?-1/x?通项;一个是求和。
这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,……等可能的概率,第二………,第三是,还有重复发生的概率。
这是我们比较头疼的问题,是整个试卷里难度比较大,计算量的题,当然这一类题,我总结下面五类常考的题型,包括类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是2008年高考已经考过的一点,第五类重点问题,这类题时往往觉得有思路,但是没有,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。
考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。
高考复习要注意的七大题型:
第二:平面向量和三角函数
重点考察三个方面:一个是划减与求值,,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。
第三:数列
数列这个板块,重点考两个方面:一个第六:解析几何通项;一个是求和。
这一板块主2. 高考数学函数与导数易错知识点要是属于数学应用问题的范畴,当然应该掌握下面几个方面,……等可能的概率,第二………,第三是,还有重复发生的概率。
这是我们比较头疼的问题,是整个试卷里难度比较大,计算量的题,当然这一类题,我总结下面五类常考的题型,包括类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是2008年高考已经考过的一点,第五类重点问题,这类题时往往觉得有思路,但是没有,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。
考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。
版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。