最恶心的首推二次曲线,立体几何,导数的那个压轴题,三角函数属于大题题,相当简单的范畴
三角函数2018高考大题 2019高考三角函数大题
三角函数2018高考大题 2019高考三角函数大题
三角函数2018高考大题 2019高考三角函数大题
三角函数属于容易挣分题,必须到手。
其实最难的题是解析几何,也是最容易拉开档次的大题。一题(导数)一般一问没几个人能做对,而前两问一般没有太大的难度。这一题不是拉开档次的题目。
三角函数重要考点,虽然高考不怎么难,但是如果他真要难时,基本没人能行,是记一下书上的和化积,和公式。那个对于解题有很大方便,可以简化很多步骤,大学求积分也很必要。大学自主招生就跟不用说了.
三角函数重要考点,不难,这些分数一定要拿到的,要多做练习
函数,三角函数、立体几何、数列、解析几何、概率,命题分析,具体详情可以回复我,我可以详细解答
一般函数的问题一个很需要认真的态度吧
高考依然到了的冲刺阶段,考生们依然坚持着最为紧张的复习。如何在众多知识点中把握住关键点,并掌握哪些技巧呢?那么接下来给大家分享一些关于做数学大题的技巧做数学大题的技巧,希望对大家有所帮助。
做数学大题的技巧
注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。
二、数列题
1、证明一个数列是等(等比)数列时,下结论时要写上以谁为首项,谁为公(公比)的等(等比)数列;
2、一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的设,否则不正确。利用上设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的 方法 是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;
3、证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。
三、立体几何题
1、证明线面位置关系,一般不需要去建系,更简单;
2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;
3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。
四、概率问题
1、搞清随机试验包含的所有基本和所求包含的基本的个数;
2、搞清是什么概率模型,套用哪个公式;
4、求概率时,正难则反(根据p1+p2+...+pn=1);
6、注意放回抽样,不放回抽样;
7、注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;
8、注意条件概率公式;
9、注意平均分组、不完全平均分组问题。
五、圆锥曲线问题
1、注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;
2、注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;
3、战术上整体思路要保7分,争9分,想12分。
六、导数、极值、最值、不等式恒成立(或逆用求参)问题
3、注意分论讨论的思想;
4、不等式问题有构造函数的意识;
5、恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法);
6、整体思路上保6分,争10分,想14分。
数学必考5类题型解题知识整合技巧
一、排列组合篇
2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。
3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。
4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。
5.了解随机的发生存在着规律性和随机概率的意义。
6.了解等可能性的概率的意义,会用排列组合的基本公式计算一些等可能性的概率。
7.了解互斥、相互的意义,会用互斥的概率加法公式与相互的概率乘法公式计算一些的概率。
二、立体几何篇
高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。
1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高 逻辑思维 能力和空间想象能力。
2.判定两个平面平行的方法:
(1)根据定义--证明两平面没有公共点;
(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;
(3)证明两平面同垂直于一条直线。
(1)由定义知:“两平行平面没有公共点”。
(2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。
(3)两个平面平行的性质定理:”如果两个平行平面同时和第三个平 面相 交,那么它们的交线平行“。
(4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。
(5)夹在两个平行平面间的平行线段相等。
(6)经过平面外一点只有一个平面和已知平面平行。
以上性质(2)、(3)、(5)、(6)在课文中虽未直接列为”性质定理“,但在解题过程中均可直接作为性质定理引用。
解答题分步骤解答可多得分
1.合理安排,保持清醒。数学考试在下午,建议中午休息半小时左右,睡不着闭闭眼睛也好,尽量放松。然后带齐用具,提前半小时到考场。
3.解答题规范有序。一般来说,试题中容易题和中档题占全卷的80%以上,是考生得分的主要来源。对于解答题中的容易题和中档题,要注意解题的规范化,关键步骤不能丢,如三种语言(文字语言、符号语言、图形语言)的表达要规范,逻辑推理要严谨,计算过程要完整,注意算理算法,应用题建模与还原过程要清晰,合理安排卷面结构……对于解答题中的难题,得满分很困难,可以采用“分段得分”的策略,因为高考(微博)阅卷是“分段评分”。比如可将难题划分为一个个子问题或一系列的步骤,先解决问题的一部分,能解决到什么程度就解决到什么程度,获取一定的分数。有些题目有好几问,前面的小问你解答不出,但后面的小问如果根据前面的结论你能够解答出来,这时候不妨引用前面的结论先解答后面的,这样跳步解答也可以得分。
三、数列问题篇
数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等数列、等比数列,求极限和数学归纳法综合在一起。探索性问题是高考的 热点 ,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
1. 在掌握等数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;
2. 在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。
3. 培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法.
四、导数应用篇
专题综述
导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的学习,主要是以下几个方面:
1.导数的常规问题:
(1)刻画函数(比初等方法细微);
(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);
2.关于函数特征,最值问题较多,所以1、先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号);有必要专项讨论,导数法求最值要比初等方法快捷简便。
3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考(微博)中考察综合能力的一个方向,应引起注意。
1.导数概念的理解。
2.利用导数判别可导函数的极值的方法及求一些实际问题的值与最小值。复合函数的求导法则是微积分中的重点与难点内容。课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。
3.要能正确求导,必须做到以下两点:
(1)熟练掌握各基本初等函数的求导公式以及和、、积、商的求导法则,复合函数的求导法则。
(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。
五、解析几何(圆锥曲线)
1、很多高考问题都是以平面上的点、直线、曲线(如圆、椭圆、抛物线、双曲线)这三大类几何元素为基础构成的图形的问题;
2、演绎规则就是代数的演绎规则,或者说就是列方程、解方程的规则。
有了以上两点认识,我们可以毫不犹豫地下这么一个结论,那就是解决高考解析几何问题无外乎做两项工作:
(1)几何问题代数化。
(2)用代数规则对代数化后的问题进行处理。
高考数学大题答题思路
1、函数与方程思想
函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。同学们在解题时可利用转化思想进行函数与方程间的相互转化。
2、 数形结合思想
中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此建议同学们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。
3、特殊与一般的思想
用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用
4、极限思想解题步骤
极限思想解决问题的一般步骤为:一、对于所求的未知量,先设法构思一个与它有关的变量;二、确认这变量通过无限过程的结果就是所求的未知量;三、构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果
5、分类讨论思想
同学们在解题时常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。引起分类讨论的原因很多,数学概念本身具有多种情形,数算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。建议同学们在分类讨论解题时,要做到标准统一,不重不漏。
做数学大题的技巧相关 文章 :
★ 做数学应用题的技巧
★ 做数学蒙题的技巧
★ 做数学压轴题的技巧初中
★ 高考数学大题答题技巧方法
★ 高考数学大题的解题技巧
★ 做数学题有何技巧方法
★ 做数学压轴题的技巧高中
★ 高考数学大题得分技巧
高考物理口诀你知道多少?刘杰40句物理口诀你清楚吗?高考物理如何得高分?下文是我给大家整理的刘杰神奇公式秒杀2018高考物理,仅供大家参考!
【提炼与提高】刘杰40句2018高考物理口诀 一、刘杰40句物理口诀之运动的描述
1.物体模型用质点,忽略形状和大小;地球公转当质点,地球自转要大小。物置的变化,准确描述用位移,运动快慢S比t ,a用Δv与t 比。
2.运用一般公式法,平均速度是简法,中间时刻速度法,初速度零比例法,再加几何图像法,求解运动好方法。自由落体是实例,初速为零a等g.竖直上抛知初速,上升心有数,飞行时间上下回,整个过程匀减速。中心时刻的速度,平均速度相等数;求加速度有好方,ΔS等于a T平方。
二、刘杰40句物理口诀之力
1.解力学题堡垒坚,受力分析是关键;分析受力性质力,根据效果来处理。
2.分析受力要仔细,定量计算七种力;重力有无看提示,根据状态定弹力;先有弹力后摩擦,相对运动是依据;万有引力在万物,电场力存在定无疑; 洛仑兹力安培力,二者实质是统一;相互垂直力,平行无力要切记。
3.同一直线定方向,计算结果只是“量”,某量方向若未定,计算结果给指明;两力合力小和大,两个力成q角夹 ,平行四边形定法;合力大小随q变 ,只在最小间,多力合力合另边。
多力问题状态,正交分解来解决,三角函数能化解。
4.力学问题方法多,整体隔离和设;整体只需看外力,求解内力隔离做;状态相同用整体,否则隔离用得多;即使状态不相同,整体牛二也可做;设某力有或无,根据计算来定夺;极限法抓临界态,程序法按顺序做;正交分解选坐标,轴上矢量尽量多。
三、刘杰40句物理口诀之牛顿运动定律
1.F等ma,牛顿二定律,产生加速度,原因就是力。
合力与a同方向,速度变量定a向,a变小则u可大 ,只8.会计算在n次重复试验中恰好发生k次的概率.要a与u同向。
2.N、T等力是视重,mg乘积是实重; 超重失重视视重,其中不变是实重;加速上升是超重,减速下降也超重;失重由加降减升定,完全失重视重零。
1.运动轨迹为曲线,向心力存在是条件,曲线运动速度变,方向就是该点切线。
2.圆周运动向心力,供需关系在心里,径向合力提供足,需mu平方比R,mrw平方也需,供求平衡不心离。
3.万有引力因质量生,存在于世界万物中,皆因天体质量大,万有引力显神通。卫星绕着天体行,快慢运动的卫星,均由距离来决定,距离越近它越快,距离越远越慢行,同步卫星速度定,定点赤道上空行。
五、刘杰40句物理口诀之机械能与能量
1.确定状态找动能,分析过程找力功,正功负功加一起,动能增量与它同。
2.明确两态机械能,再看过程力做功,“重力”之外功为零,初态末态能量同。
3.确定状态找量能,再看过程力做功。有功就有能转变,初态末态能量同。
神奇公式秒杀2018高考物理 1.开普勒定律的内容是所有的行星围绕太阳运动的轨道都是椭圆,太阳在椭圆轨道的一个焦点上。开普勒第三定律的内容是所有行星的半长轴的三次方跟公转周期的平方的比值都相等,即R3/ T2=k。
2.地球质量为M,半径为R,万有引力常量为G,地球表面的重力加速度为g,则其间存在的一个常用的关系是。(类比其他星球也适用)
3.做平抛或类平抛运动的物体在任意相等的时间内速度的变化都相等,方向与加速度方向一致(即Δv=at)。
4.宇宙速度(近地卫星的环绕速度)的表达式v1=(GM/R)1/2=(gR) 1/2,大小为7.9m/s,它是发射卫星的最小速度,也是地球卫星的环绕速度。随着卫星的高度h的增加,v减小,ω减小,a减小,T增加。
5.第二宇宙速度:v2=11.2km/s,这是使物体脱离地球引力束缚的最小发射速度。
6.第三宇宙速度:v3=16.7km/s,这是使物体脱离太阳引力束缚的最小发射速度。
7.速度选择器模型:带电粒子以速度v射入正交的电场和磁场区域时,当电场力和磁场力方向相反且满足v=E/B时,带电粒子做匀速直线运动(被选择)与带电粒子的带电荷量大小、正负无关,但改变v、B、E#from 高中物理常见结论来自学优网 end#中的任意一个量时,粒子将发生偏转。
8.做功的过程就是能量转化的过程,做了多少功,就表示有多少能量发生了转化,所以说功是能量转化的量度,以此解题就是利用功能关系解题。
9.一对滑动摩擦力做功的过程中,能量的分配有两个方面:一是相互摩擦的物体之间的机械能的转移;二是系统机械能转化为内能;转化为内能的量等于滑动摩擦力与相对路程的乘积,即Q=f. Δs相对。
广东高考数学压轴三角函数18分左右;立体几何22分左右;解析几何28分左右;数列18分左右;函数与导数43分左右;不等式12分左右;二项式定理6分左右;复数5分;概率与统计18分左右。各知识点都很平均。解析几何的选择题只是考察概念,不会很难,选择提前10道和大题的三角函数,概率,立体几何, 只多要做题,可以在短时间内突破。题基本上包括:函数与导数;数列;圆锥曲线方程;不等式等。其中,函数思想渗透到每一个方面,可以这么说,函数占高中数学大半壁江山。函数一般要求单调性,可以对函数求导;数列是特殊的函数,要求通项公式,前n项和;圆锥曲线方程一般涉及直线与方程,弦长,中点,对称点,可以联立方程,应用韦达定理,设而不求等方法去求解。具体问题具体分析,没有什么一种方法可以解决全部问题的!有什么不明白可以再提问!!
2.通览全卷,摸透题情。刚拿到试卷,一般较紧张,不宜匆忙作答,应从头到尾通览全卷,尽量从卷面上获取更多的信息,摸透题情。这样能提醒自己先易后难,也可防止漏做题。记 的内角 的对边分别为 ,已知 .
高考数学大题6大题型是:(1)若 ,求 ;
(2)求 的最小值;
【解答问题1】
又∵ , ∴ , 且
∴ .
【解答问题2】
∵ ,
∴∴ .
又∵ 在 中, , ∴ ,(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。
又∵ , ∴
根据正弦定理,
∵∴ , 当 时等号成立.
∴ 的最小值 是 .
本题有两大特点,一是对于三角恒等变换要求较高;二是将不等式的考查综合到三角大题中。
在最近一些年的高中教材和高考题中,降低了对于三角恒等变换的要求。这种做给学生在大学阶段的学习造成隐患。
作为高中教学的指挥棒,高考数学中提高对于三角恒等变换的要求,是一项正确的改变。
将三角与不等式综合起来考查,则是很早就有的做法,并不新鲜。
【相关考题】
基本不等式与三角函数综合
因为正弦定理就是a=2RsinA,10.运动的时间:轨迹对应的圆心角越大,带电粒子在磁场中的运动时间就越长,与粒子速度的大小无关。[t=θT/(2π)= θm/(qB)]。b=2RsinB,c=2RsinC对应的,所以相关等式中就出现了边长和角度对应的现象(5)(理)概率分布、期望、方、排列组合。概率题贴近生活、贴近实际,考查等可能 性、互斥、的概率计算公 式,难度不算很大。。
消去2R得sinA+sinB=2sinC。
我是去年高考的,听说
3.两个平面平行的主要性质:今年
改革了,不知道去年的东西今年还有没有用。
大题
:17~22
三角函数、
数列
、立体几何
还有应用题多在17
到20
题中考察,17,18
题多考察三角函数,数列或者排列问题,一般19题考立体几何,20考应用题。21,22一般比较难,多考
函数
,导数重庆是六道,一般是三角函数、立体几何、数列、导数、解析几何、概率,一般难点在导数或者数列
几乎必考。我认为考试的时候只要做到足够细心,会的能够做完做对就谢天谢地了,别再不会的上面浪费太多功夫,至于
技巧
老师应该都会说,好好听着就行,我个人认为最关键的是心态,技巧倒是其次。
前面题目都是简单的,倒数第二题无非数字烦一点,但记住公式写下去基本对的,一题确实要考智商,写不出还是放弃好,检查前面题目,因为时间会来不及。数学高考中六道大题其中以三角函数,概率,立体几何为内容的大题基本上不会做压轴题,相对重视三角恒等变换下的性质探究,重视考查图形图像的变换。较容易;以函数,数列,解析几何为内容的大题经常做压轴题,相对较难。对于这五道答题,建议每道题的答题时间平均为10分钟左右。
按内容来分:三角函数,概率,立体几何,函数,数列,解析几何。
基础不同的学生对试题难易的感受不一样,基础扎实的学生如果在前面答题比较顺利,时间充裕,可以冲击几道大题;平时学习成绩一般的同学,对后几道大题,能做几问就做几问,争取拿到步骤分;平时成绩薄弱的考生,应主攻选择题和填空题,大题能做就做几问。
高考中占函数这得看你是在什么地方参加高考了。江苏一般两题都是综合题双曲线与函数、平几等等结合,可结合东西太多了,看出题者程度。压轴题要么是抽象函数题要么是复杂数列。题的分数大概是12分
一道选择
一道大题
希望对(1)等数列、等比数列、递推数列是考查的热点,数列通项、数列前n项的和以及二者之间的关系。你有所帮助,望采纳。
高考中占函数题的分数大概是12分
一道选择 一道大题
一般会出现在选择、填空,和大题题。总的来看稳定在21分左右
18-22分
1、三角函数、向量、解三角形
(4)应用题。(1)三角函数画图、性质、三角恒等变换、和与公式。
(2)向量的工具性(平面向量背景)。
(3)正弦定理、余弦定理、解三角形背景。
(4)综合题、三角题一般用平面向量进行“包装”,讲究知识的交汇性,或将三角函数与解三角形有机融合。
2、概率与统计
(1)古典概型。
(2)茎叶图。
(四、刘杰40句物理口诀之曲线运动、万有引力3)直方图。
(4)回归方程。
3、立体几何
(1)平行。
(2)垂直。
(3)角
b:(理)二面角、线面角。
(4)利用三视图计算面积与体积。
(5)既可以用传统的几何法,也可以建立空间直角坐标系,利用法向量等。
4、数列
(2)文理科的区别较大,理科多出现在压轴题位置的卷型,理科注重数学归纳法。
(3)错位相减法、裂项求和法。
5、圆锥曲线(椭圆)与圆
(1)椭圆为主线,强调圆锥曲线与直线的位置关系,突出韦达定理或值法。
(2)圆的方程,圆与直线的位置关系。
(3)注重椭圆与圆、椭圆与抛物线等的组合题。
6、函数、导数与不等式
(1)函数是该题型的主体:三次函数,指数函数,对数函数及其复合函数。
(3)利用基本不等式、对勾函数性质。
版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。