二、以下用向量法求解的简单常识:
高考文科立体几何百度文库 文科高考立体几何建系得分吗
高考文科立体几何百度文库 文科高考立体几何建系得分吗
高考文科立体几何百度文库 文科高考立体几何建系得分吗
4、利用向量证a⊥b,就是分别在a,b上取向量a·b=0 .
5、利用3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。向量求两直有了以上两点认识,我们可以毫不犹豫地下这么一个结论,那就是解决高考解析几何问题无外乎做两项工作:线a与b的夹角,就是分别在a,b上取 a,b,求: 的问题.
6、利用向量求距离即求向量的模问题.
7、利用坐标法研究线面关系或求角和距离,关键是建立正确的空间直角坐标系,正确表达已知点的坐标.
空间向量你要类比平面向量。比如数乘,数量积,向量的加减法,空间、平面向量都是一样的算法。你可以翻高一的书,平面向量那一章节,类比学习空间向量。
,必需找准X,Y,Z三个坐标.
第二,也是这种方法的缺陷是计算量会很大,而且每个向量必须准确无误,否则准确性就难以保障.
第三,用在复杂题型上耗时较长.
对于数学学科,我并不赞同只会一种方法解决题目,虽然题目能够解出,但对于自己的收获量来说是微乎其微的.
都能用空间向量来解,因为图形一定存在于三维空间
但向量法计算困难,比较麻烦
行,做了N多题了,只是计算容易出错,而且有时用几何解简单,自己琢磨吧
很多能,,也有不能的,这种比较烦
2022全国新高考Ⅱ卷文科数学试题还未出炉,待高考结束后,我会时间更新2022全国新高考Ⅱ卷文科数学试题,供大家对照、估分、模拟使用。
2022高考数学大题题型 总结
一、三角函数或数列
近几年来,关于数列方面的考题题主要包含以下几个方面:
(2)把数列知识和其他知识点相结合,主要包括数列知识和函数、方程、不等式、三角、几何等其他知识相结合。
(3)应用题中的数列问题,一般是以增长率问题出现。
二、立体几何
高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着多一点思考,少一点计算的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。
1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。
4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。
5.了解随机的发生存在着规律性和随机概率的意义。
7.了解互斥、相互的意义,会用互斥的概率加法公式与相互的概率乘法公式计算一些的概率。
四、解析几何(圆锥曲线)
2、演绎规则就是代数的演绎规则,或者说就是列方程、解方程的规则。
(1)、几何问题代数化。
(2)、用代数规则对代数化后的问题进行处理。
五、函数与导数
导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的学习,主要是以下几个方面:
1.导数的常规问题:
(1)刻画函数(比初等 方法 细微);
(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);
(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。
2.关于函数特★ 2022年全国乙卷高考语文真题试卷及解析(未公布)征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。
3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。
2022高考解答题评分标准
解题策★ 2022年高考数学必考知识点总结略:
3.思维不严谨,不要忽视易错点;
4.解题步骤不规范,一定要按课本要求,否则会因不规范答题失分,避免“对而不全”如解概率题,要给出适当的文字说明,不能只列几个式子或单纯的结论,表达不规范、字迹不工整等非智力因素会影响阅卷老师的“感情分”;
6.轻易放弃试题,难题不会做,可分解成小问题,分步解决,如最起码能将文字语言翻译成符号语言、设应用题未知数、设轨迹的动点坐标等,都能拿分。也许随着这些小步骤的罗列,还能悟出解题的灵感。
2022全国新高考Ⅱ卷文科数学试题及解析相关 文章 :
★ 2022高考全国甲卷数学试题及
★ 2022年浙江高考数学试卷
★ 2022新高考2卷语文试题及一览
★ 2022全国高考试卷分几类
★ 2022高考数学必考知识点归纳
★ 2022高考文综理综各题型分数值一览
★ 2022年新高考Ⅰ卷语文题目与参考
1、框图的题目难度不大,我建议搞懂,这种新增知识点考察是必要的,一般考查的也是容易提
2、立体几何,我建议是文科就用判定定理或者是相关性质去证明,尽量不要用空间向量,容易失分
所谓殊途同归,只要你能解出来,且条理清晰,都可以。2022全国新高考Ⅱ卷文科数学试题及解析
1. 三角————三角函数或解三角形;
2. 立体几何证明————平行或垂直,求体积;还是用文科滴做法吧 也不会难啦 稳定为主
3. 统计与概率————频率直方图和简单的古典概率;
4. 数综合多数省份的命题情况, 大题一般分布在:列————等数列、等比数列的通项公式,数列求和方法,侧重计算;
5.导数————研究曲线的切线,研究函数的单调性和极值、最值、零点等性质;
6.圆锥曲线————求曲线的方程,研究直线和圆锥曲线相交的问题——弦长、中点、面积、定点、定值、最值等问题。
高考数学立体几何就一个大题,你要是想象力不行也多大关系。高中数学早给你想好了办法---向量法,用向量法不用几何想象力,只是步骤比较繁琐一般人不愿意用,但还是比较可靠实用。加油!一切会好的
看你是什么省份了,可以看看历年的高考立体几何一般考什么类型,想象力可以慢慢来的,因为我之前的想象力也不是很好。
速成方案:从证明题入手,高考解析几何剖析:按定理出现的顺序每个定理题型做5至10道题,每道题都由自己另画图,题不选难的,做下去,把定理记普遍说,大多数的立体几何可以使用这一方法,但是使用空间向量的要求:住再用熟,其他题型不攻自破。
很多学生潜意识会做出这样的推理::
2) 因为我没有良好的空间想象能力->
3) 良好的空间想象能力应该是天生的->
5) 因此我再怎么努力也是徒劳的。
而很多老师教不得法,让那些努力学习了的孩子仍旧不能取得进步,于是,他们就更加相信上面的推理了,最终成为恶性循环。
事实上只要掌握对方法,用李泽宇三招 翻译-特殊化-盯住目标 可以提升立体几何的解题能力
曾经有个考生,他们的教材中没有动能定理,但他用了,结三、统计与概率果的零分。
福建省文科数学高考共建立体几何用向量的方法,同样可以获得成绩。
:
立体几何
数学上,立体几何(Solid geometry)是3维欧氏空间的几何的传统名称—- 因为实际上这大致上就是我们生活的空间。一般作为平面几何的后续课程。立体测绘(Stereometry)处理不同形体的体积的测量问题:圆柱,圆锥, 锥台, 球, 棱柱, 楔, 瓶盖等等。 毕达哥拉斯学派就处理过球和正多面体,但是棱锥,棱柱,圆锥和圆柱在柏拉图学派着手处理之前人们所知甚少。尤得塞斯(Eudoxus)建立了它们的测量法,证明锥是等底等高的柱体积的三分之一,可能也是个证明球体积和其半径的立方成正比的。
立体几何中的向量方法
1)通过线线、线面、面面关系考查空间向量的坐标运算.
2)能用向量方法证明直线和平面位置关系的一些定理.
这些在高考中通常都会考到的,而且经常就是使用这种方法。
老师曾经强调过!教材没有的考纲没有的!不要随意添加!因为它的标准很可能没有这个!
我觉得你还是不要用得好!高考不能冒这么大的风险!!!
给,,,这个是高中的内容,只要掌握了,会给分
我估计是不给
所以说数学里面空间几何是一个理科生学的更简单的东西
可以的。但是文科是不需要学习空间向量的,所以必然可以找到1) 我的立体几何学不好->不用空间向量的方法。
不会扣分,但是为了安全起见,还是用常规方法比较好。因为难保高考改卷的某些老师三角函数/数列为求快只是照着标准改,那就对你不利了。
文科 数学 会考哪些题型呢?什么题型是最常考的?高三文科生在复习时要着重复习哪些题型呢?下面和我一起来看看吧!
一、高考出的立体几何题一般都能用空间向量解。文科数学常考题型有哪些
8.会计算在n次重复试验中恰好发生k次的概率.圆/坐标系与参数方程/不等式
函数
一般全国卷文科数学的第21题会考函数题。高考对三角函数知识主要考查三角函数及解三角形两部分知识。主要知识点有三角函数概念。恒等变形、同角关系等。三角函数还可以和向量知识结合在一起考,也可以和正弦定理、余弦定理结合起来一起考查。
解析几何
一般全国卷文科数学的第20题会考解析几何题。解析几何也不是难题,只要大家平时努力,这些题目都算是相对简单的。所以大家不要有畏难情绪,认为这是2道大题就觉得有多难,其实如果你认认真真去做了,这道题还是有希望做对的。退一步来说,即便是真的不会了,那也可以得一些步骤分,前一两问还是没问题的。
立体几何
一般全国卷文科数学的第19题会考立体几何题。例题几何也不难,但大家一定要敢于尝试,敢于动笔写,不要说没有做题思路就放弃这道题。只要你按照常规的方法做就可以,然后一步步分析下去,边分析边写步骤,结果自然就出来了。如果没思路可以尝试2种以上的方法做。
概率
一般全国卷文科数学的第18题会考概率题。概率题相对比较简单,也是必须得分的题,这道题主要频数分布表、频率分布直方图、回归方程的求法、概率计算、相关系数的计算等等。主要还是对作图和识图能力考查比较多。
文科数学成绩怎么提高
文科数学的一大特色,就在于你可以通过有效的总结来代替无尽的习题。总结并不代表一味地抄公式抄概念,而应该用自己的语言和做题经验归纳出针对自身的解题技巧,这也就是我所谓的“翻译”。事实上,高三一年我花在总结上的工夫与做题相比有过之而无不及。
粗心大意是文科数学学习中难以绕过的一大障碍,然而粗心只是表象,追本溯源仍是不够熟练。心态的调整亦无需花费额外的精力。我所采取的措施是在临考一个月时找来近三年的 高考试题 ,在规定的时间内细做一遍,并将写在卷上,达到降低高考恐惧感,增强自信心的目的。
我:高考数学复习重点题型有哪些
一、基本概念: 1、 数列的定义及表示方法: 2、 数列的项与项数: 3、 有穷数列与无穷数列: 4、 递增(减)、摆动、循环数列: 5、 数列{an}的通项公式an: 6、 数列的前n项和公式Sn: 7、 等数列、公d、等数列的结构: 8、 等比数列、公比q、等比数列的结构: 二、基本公式: 9、一般数列的通项an与前n项和Sn的关系:an= 10、等数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。 11、等数列的前n项和公式:Sn= Sn= Sn= 当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。 12、等比数列的通项公式: an= a1 qn-1 an= ak qn-k (其中a1为首项、ak为已知的第k项,an≠0) 13、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式); 当q≠1时,Sn= Sn= 三、有关等、等比数列的结论 14、等数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等数列。 15、等数列{an}中,若m+n=p+q,则 16、等比数列{an}中,若m+n=p+q,则 17、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等比数列。 18、两个等数列{an}与{bn}的和的数列{an+bn}、{an-bn}仍为等数列。 19、两个等比数列{an}与{bn}的积、商、倒数组成的数列 {an bn}、 、 仍为等比数列。 20、等数列{an}的任意等距离的项构成的数列仍为等数列。 21、等比数列{an}的任意等距离的项构成的数列仍为等比数列。 22、三个数成等的设法:a-d,a,a+d;四个数成等的设法:a-3d,a-d,,a+d,a+3d 23、三个数成等比的设法:a/q,a,aq; 四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?) 24、{an}为等数列,则 (c>0)是等比数列。 25、{bn}(bn>0)是等比数列,则{logcbn} (c>0且c 1) 是等数列。 26. 在等数列 中: (1)若项数为 ,则 (2)若数为 则, , 27. 在等比数列 中: (1) 若项数为 ,则 (2)若数为 则, 四、数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。关键是找数列的通项结构。 28、分组法求数列的和:如an=2n+3n 29、错位相减法求和:如an=(2n-1)2n 30、裂项法求和:如an=1/n(n+1) 31、倒序相加法求和:如an= 32、求数列{an}的、最小项的方法: ① an+1-an=…… 如an= -2n2+29n-3 ② (an>0) 如an= ③ an=f(n) 研究函数f(n)的增减性 如an= 33、在等数列 中,有关Sn 的最值问题——常用邻项变号法求解: (1)当 >0,d<0时,满足 的项数m使得 取值. (2)当 <0,d>0时,满足 的项数m使得 取最小值。 在解含的数列最值问题时,注意转化思想的应用。 六、平面向量 1.基本概念: 向量的定义、向量的模、零向量、单位向量、相反向量、共线向量、相等向量。 2. 加法与减法的代数运算: (1) . (2)若a=( ),b=( )则a b=( ). 向量加法与减法的几何表示:平行四边形法则、三角形法则。 以向量 = 、 = 为邻边作平行四边形ABCD,则两条对角线的向量 = + , = - , = - 且有| |-| |≤| |≤| |+| |. 向量加法有如下规律: + = + (交换律); +( +c)=( + )+c (结合律); +0= +(- )=0. 3.实数与向量的积:实数 与向量 的积是一个向量。 (1)| |=| |·| |; (2) 当 >0时, 与 的方向相同;当 <0时, 与 的方向相反;当 =0时, =0. (3)若 =( ),则 · =( ). 两个向量共线的充要条件: (1) 向量b与非零向量 共线的充要条件是有且一个实数 ,使得b= . (2) 若 =( ),b=( )则 ‖b . 平面向量基本定理: 若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量 ,有且只有一对实数 , ,使得 = e1+ e2. 4.P分有向线段 所成的比: 设P1、P2是直线 上两个点,点P是 上不同于P1、P2的任意一点,则存在一个实数 使 = , 叫做点P分有向线段 所成的比。 当点P在线段 上时, >0;当点P在线段 或 的延长线上时, <0; 分点坐标公式:若 = ; 的坐标分别为( ),( ),( );则 ( ≠-1), 中点坐标公式: . 5. 向量的数量积: (1).向量的夹角: 已知两个非零向量 与b,作 = , =b,则∠AOB= ( )叫做向量 与b的夹角。 (2).两个向量的数量积: 已知两个非零向量 与b,它们的夹角为 ,则 ·b=| |·|b|cos . 其中|b|cos 称为向量b在 方向上的投影. (3).向量的数量积的性质: 若 =( ),b=( )则e· = ·e=| |cos (e为单位向量); ⊥b ·b=0 ( ,b为非零向量);| |= ; cos = = . (4) .向量的数量积的运算律: ·b=b· ;( )·b= ( ·b)= ·( b);( +b)·c= ·c+b·c. 6.主要思想与方法: 本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离3、利用向量证a∥b,就是分别在a,b上取向量a=λb(λ∈R).、向量的夹角,判断两向量是否垂直等。由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点。 七、立体几何 1.平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。 能够用斜二测法作图。 2.空间两条直线的位置关系:平行、相交、异面的概念; 会求异面直线所成的角和异面直线间的距离;证明两条直线是异面直线一般用反证法。 3.直线与平面 ①位置关系:平行、直线在平面内、直线与平面相交。 ②直线与平面平行的判断方法及性质,判定定理是证明平行问题的依据。 ③直线与平面垂直的证明方法有哪些? ④直线与平面所成的角:关键是找它在平面内的射影,范围是{00.900} ⑤三垂线定理及其逆定理:每年高考试题都要考查这个定理. 三垂线定理及其逆定理主要用于证明垂直关系与空间图形的度量.如:证明异面直线垂直,确定二面角的平面角,确定点到直线的垂线. 4.平面与平面 (1)位置关系:平行、相交,(垂直是相交的一种特殊情况) (2)掌握平面与平面平行的证明方法和性质。 (3)掌握平面与平面垂直的证明方法和性质定理。尤其是已知两平面垂直,一般是依据性质定理,可以证明线面垂直。 (4)两平面间的距离问题→点到面的距离问题→ (5)二面角。二面角的平面交的作法及求法: ①定义法,一般要利用图形的对称性;一般在计算时要解斜三角形; ②垂线、斜线、射影法,一般要求平面的垂线好找,一般在计算时要解一个直角三角形。 ③射影面积法,一般是二面交的两个面只有一个公共点,两个面的交线不容易找到时用此法?
你去“百度 文库”搜索一下,就可以找到很多类似的文章。
版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。