一、选择题
2017夏季高考数学题(2017年高考数学题全国一卷)
2017夏季高考数学题(2017年高考数学题全国一卷)
2017夏季高考数学题(2017年高考数学题全国一卷)
2017夏季高考数学题(2017年高考数学题全国一卷)
1.已知函数f(x)=2x3-x2+m的图象上A点处的切线与直线x-y+3=0的夹角为45°,则A点的横坐标为()
A.0 B.1 C.0或 D.1或
:C命题立意:本题考查导数的应用,难度中等.
解题思路:直线x-y+3=0的倾斜角为45°,
切线的倾斜角为0°或90°,由f′(x)=6x2-x=0可得x=0或x=,故选C.
易错点拨:常见函数的切线的斜率都是存在的,所以倾斜角不会是90°.
2.设函数f(x)=则满足f(x)≤2的x的取值范围是()
A.[-1,2] B.[0,2]
C.[1,+∞) D.[0,+∞)
:D命题立意:本题考查分段函数的相关知识,求解时可分为x≤1和x>1两种情况进行求解,再对所求结果求并集即得最终结果.
解题思路:若x≤1,则21-x≤2,解得0≤x≤1;若x>1,则1-log2 x≤2,解得x>1,综上可知,x≥0.故选D.
3.函数y=x-2sin x,x的大致图象是()
:D解析思路:因为函数为奇函数,所以图象关于原点对称,排除A,B.函数的导数为f′(x)=1-2cos x,由f′(x)=1-2cos x=0,得cos x=,所以x=.当00,函数单调递增,所以当x=时,函数取得极小值.故选D.
4.已知函数f(x)满足:当x≥4时,f(x)=2x;当x
[img]一、选择题
1.已知函数f(x)=2x3-x2+m的图象上A点处的切线与直线x-y+3=0的夹角为45°,则A点的横坐标为()
A.0 B.1 C.0或 D.1或
:C命题立意:本题考查导数的应用,难度中等.
解题思路:直线x-y+3=0的倾斜角为45°,
切线的倾斜角为0°或90°,由f′(x)=6x2-x=0可得x=0或x=,故选C.
易错点拨:常见函数的切线的斜率都是存在的,所以倾斜角不会是90°.
2.设函数f(x)=则满足f(x)≤2的x的取值范围是()
A.[-1,2] B.[0,2]
C.[1,+∞) D.[0,+∞)
:D命题立意:本题考查分段函数的相关知识,求解时可分为x≤1和x>1两种情况进行求解,再对所求结果求并集即得最终结果.
解题思路:若x≤1,则21-x≤2,解得0≤x≤1;若x>1,则1-log2 x≤2,解得x>1,综上可知,x≥0.故选D.
3.函数y=x-2sin x,x的大致图象是()
:D解析思路:因为函数为奇函数,所以图象关于原点对称,排除A,B.函数的导数为f′(x)=1-2cos x,由f′(x)=1-2cos x=0,得cos x=,所以x=.当00,函数单调递增,所以当x=时,函数取得极小值.故选D.
4.已知函数f(x)满足:当x≥4时,f(x)=2x;当x0).
(2)设M(m,-p),两切点为A(x1,y1),B(x2,y2).
由x2=4py得y=x2,求导得y′=x.
两条切线方程为y-y1=x1(x-x1),
y-y2=x2(x-x2),
对于方程,代入点M(m,-p)得,
-p-y1=x1(m-x1),又y1=x,
-p-x=x1(m-x1),
整理得x-2mx1-4p2=0.
同理对方程有x-2mx2-4p2=0,
即x1,x2为方程x2-2mx-4p2=0的两根.
x1+x2=2m,x1x2=-4p2.
设直线AB的斜率为k,k===(x1+x2),
所以直线的方程为y-=(x1+x2)(x-x1),展开得:
y=(x1+x2)x-,
将代入得:y=x+p.
直线恒过定点(0,p).
一、选择题
1.(哈尔滨质检)设全集U=R,A={x|x(x-2)1},所以AB=[0,+∞),A∩B=(1,2],所以A×B=[0,1](2,+∞).
4.已知P={x|x2-x-2≤0},Q={x|log2(x-1)≤1},则(RP)∩Q=()
A.[2,3] B.(-∞,-1][3,+∞)
C.(2,3] D.(-∞,-1](3,+∞)
:C解题思路:因为P={x|-1≤x≤2},Q={x|1
5.已知M={1,2,3,4,5},N=,则M∩N=()
A.{4,5} B.{1,4,5}
C.{3,4,5} D.{1,3,4,5}
:C命题立意:本题考查不等式的解法与交集的意义,难度中等.
解题思路:由≤1得≥0,x0”;
若“pq”为命题,则p,q均为命题;
“三个数a,b,c成等比数列”是“b=”的既不充分也不必要条件.
A.0 B.1 C.2 D.3
:B命题立意:本题主要考查简易逻辑知识,难度较小.
解题思路:对于,全称命题的否定是特称命题,故正确;对于,若pq为,则p,q中至少有一个为,不需要均为,故不正确;对于,若a,b,c成等比数列,则b2=ac,当b0,故不等式等价于a≤,因为x+≥2当且仅当x=,即x=1时取等号,所以不等式成立的条件是a≤1.
综上,命题pq为真,即p真q真时,a的取值范围是(-,1].
12.设等比数列{an}的前n项和为Sn,则“a1>0”是“S3>S2”的________条件.
:充要命题立意:本题考查了等比数列的公式应用及充要条件的判断,难度中等.
解题思路:若a1>0,则a3=a1q2>0,故有S3>S2.若S3>S2,则a3>0,即得a1q2>0,得a1>0, “a1>0”是“S3>S2”的充要条件.
13.已知c>0,且c≠1.设命题p:函数f(x)=logc x为减函数;命题q:当x时,函数g(x)=x+>恒成立.如果p或q为真命题,p且q为命题,则实数c的取值范围为________.
:(1,+∞)命题立意:本题主要考查命题真的判断,在解答本题的过程中,要考虑有p真q或pq真两种情况.
解题思路:由f(x)=logc x为减函数得0恒成立,得2>,解得c>.如果p真q,则01,所以实数c的取值范围为.
14.给出下列四个结论:
命题“x∈R,x2-x>0”的否定是“x∈R,x2-x≤0”;
函数f(x)=x-sin x(xR)有3个零点;
对于任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x>0时,f′(x)>0,g′(x)>0,则xg′(x).
其中正确结论的序号是________.(请写出所有正确结论的序号)
:解题思路:显然正确;由y=x与y=sin x的图象可知,函数f(x)=x-sin x(xR)有1个零点,不正确;对于,由题设知f(x)为奇函数,g(x)为偶函数,又奇函数在对称区间上单调性相同,偶函数在对称区间上单调性相反, 当x0,g′(x)g′(x),正确.
15.(海淀测试)给出下列命题:
“α=β”是“tan α=tan β”的既不充分也不必要条件;
“p为真”是“p且q为真”的必要不充分条件;
“数列{an}为等比数列”是“数列{anan+1}为等比数列”的充分不必要条件;
“a=2”是“f(x)=|x-a|在[2,+∞)上为增函数”的充要条件.
其中真命题的序号是________.
:命题立意:本题考查充分条件、必要条件的判断,难度中等.
解题思路:对于,当α=β=时,不能推出tan α=tan β,反之也不成立,故成立;对于,易得“p为真”是“p且q为真”的必要不充分条件,故成立;对于,当数列{anan+1}是等比数列时不能得出数列{an}为等比数列,故成立;对于,“a=2”是“f(x)=|x-a|在[2,+∞)上为增函数”的充分不必要条件,故不成立.
一、选择题
1.已知函数f(x)=2x3-x2+m的图象上A点处的切线与直线x-y+3=0的夹角为45°,则A点的横坐标为()
A.0 B.1 C.0或 D.1或
:C命题立意:本题考查导数的应用,难度中等.
解题思路:直线x-y+3=0的倾斜角为45°,
切线的倾斜角为0°或90°,由f′(x)=6x2-x=0可得x=0或x=,故选C.
易错点拨:常见函数的切线的斜率都是存在的,所以倾斜角不会是90°.
2.设函数f(x)=则满足f(x)≤2的x的取值范围是()
A.[-1,2] B.[0,2]
C.[1,+∞) D.[0,+∞)
:D命题立意:本题考查分段函数的相关知识,求解时可分为x≤1和x>1两种情况进行求解,再对所求结果求并集即得最终结果.
解题思路:若x≤1,则21-x≤2,解得0≤x≤1;若x>1,则1-log2 x≤2,解得x>1,综上可知,x≥0.故选D.
3.函数y=x-2sin x,x的大致图象是()
:D解析思路:因为函数为奇函数,所以图象关于原点对称,排除A,B.函数的导数为f′(x)=1-2cos x,由f′(x)=1-2cos x=0,得cos x=,所以x=.当00,函数单调递增,所以当x=时,函数取得极小值.故选D.
4.已知函数f(x)满足:当x≥4时,f(x)=2x;当x0).
(2)设M(m,-p),两切点为A(x1,y1),B(x2,y2).
由x2=4py得y=x2,求导得y′=x.
两条切线方程为y-y1=x1(x-x1),
y-y2=x2(x-x2),
对于方程,代入点M(m,-p)得,
-p-y1=x1(m-x1),又y1=x,
-p-x=x1(m-x1),
整理得x-2mx1-4p2=0.
同理对方程有x-2mx2-4p2=0,
即x1,x2为方程x2-2mx-4p2=0的两根.
x1+x2=2m,x1x2=-4p2.
设直线AB的斜率为k,k===(x1+x2),
所以直线的方程为y-=(x1+x2)(x-x1),展开得:
y=(x1+x2)x-,
将代入得:y=x+p.
直线恒过定点(0,p).
一、选择题
1.(哈尔滨质检)设全集U=R,A={x|x(x-2)1},所以AB=[0,+∞),A∩B=(1,2],所以A×B=[0,1](2,+∞).
4.已知P={x|x2-x-2≤0},Q={x|log2(x-1)≤1},则(RP)∩Q=()
A.[2,3] B.(-∞,-1][3,+∞)
C.(2,3] D.(-∞,-1](3,+∞)
:C解题思路:因为P={x|-1≤x≤2},Q={x|1
5.已知M={1,2,3,4,5},N=,则M∩N=()
A.{4,5} B.{1,4,5}
C.{3,4,5} D.{1,3,4,5}
:C命题立意:本题考查不等式的解法与交集的意义,难度中等.
解题思路:由≤1得≥0,x0”;
若“pq”为命题,则p,q均为命题;
“三个数a,b,c成等比数列”是“b=”的既不充分也不必要条件.
A.0 B.1 C.2 D.3
:B命题立意:本题主要考查简易逻辑知识,难度较小.
解题思路:对于,全称命题的否定是特称命题,故正确;对于,若pq为,则p,q中至少有一个为,不需要均为,故不正确;对于,若a,b,c成等比数列,则b2=ac,当b0,故不等式等价于a≤,因为x+≥2当且仅当x=,即x=1时取等号,所以不等式成立的条件是a≤1.
综上,命题pq为真,即p真q真时,a的取值范围是(-,1].
12.设等比数列{an}的前n项和为Sn,则“a1>0”是“S3>S2”的________条件.
:充要命题立意:本题考查了等比数列的公式应用及充要条件的判断,难度中等.
解题思路:若a1>0,则a3=a1q2>0,故有S3>S2.若S3>S2,则a3>0,即得a1q2>0,得a1>0, “a1>0”是“S3>S2”的充要条件.
13.已知c>0,且c≠1.设命题p:函数f(x)=logc x为减函数;命题q:当x时,函数g(x)=x+>恒成立.如果p或q为真命题,p且q为命题,则实数c的取值范围为________.
:(1,+∞)命题立意:本题主要考查命题真的判断,在解答本题的过程中,要考虑有p真q或pq真两种情况.
解题思路:由f(x)=logc x为减函数得0恒成立,得2>,解得c>.如果p真q,则01,所以实数c的取值范围为.
14.给出下列四个结论:
命题“x∈R,x2-x>0”的否定是“x∈R,x2-x≤0”;
函数f(x)=x-sin x(xR)有3个零点;
对于任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x>0时,f′(x)>0,g′(x)>0,则xg′(x).
其中正确结论的序号是________.(请写出所有正确结论的序号)
:解题思路:显然正确;由y=x与y=sin x的图象可知,函数f(x)=x-sin x(xR)有1个零点,不正确;对于,由题设知f(x)为奇函数,g(x)为偶函数,又奇函数在对称区间上单调性相同,偶函数在对称区间上单调性相反, 当x0,g′(x)g′(x),正确.
15.(海淀测试)给出下列命题:
“α=β”是“tan α=tan β”的既不充分也不必要条件;
“p为真”是“p且q为真”的必要不充分条件;
“数列{an}为等比数列”是“数列{anan+1}为等比数列”的充分不必要条件;
“a=2”是“f(x)=|x-a|在[2,+∞)上为增函数”的充要条件.
其中真命题的序号是________.
:命题立意:本题考查充分条件、必要条件的判断,难度中等.
解题思路:对于,当α=β=时,不能推出tan α=tan β,反之也不成立,故成立;对于,易得“p为真”是“p且q为真”的必要不充分条件,故成立;对于,当数列{anan+1}是等比数列时不能得出数列{an}为等比数列,故成立;对于,“a=2”是“f(x)=|x-a|在[2,+∞)上为增函数”的充分不必要条件,故不成立.
你好,sino和cos都是正的啊,那个变成5sin就可以说明啊,希望能帮到你
2017年的高考数学试题延续了近几年的命题风格,同时也在题目设置上进行了一些调整。
2017年的高考数学试题延续了近几年的命题风格,同时也在题目设置上进行了一些调整。既注重考查考生对基础知识的掌握程度,符合颁发的《高中数学课程标准》的要求,又在一定程度上加以适度创新,注重考查考生的数学思维和能力。
体现出命题人关注考生学习数学所具备的素养和潜力,倡导用数学的思维进行数学学习,感受数学的思维过程。2017年高考数学试题评析: 加强理性思维考查,突出创新应用。
高考数学必考知识点归纳如下
1、平面向量与三角函数、三角变换及其应用,这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
2、概率和统计,这部分和生活联系比较大,属应用题。
3、考查圆锥曲线的定义和性质,轨迹方程问题、含参问题、定点定值问题、取值范围问题,通过点的坐标运算解决问题。
4、考查运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
5、证明平行或垂直,求角和距离。主要考察对定理的熟悉程度、运用程度。
一、选择题
1.平行四边形ABCD的一条对角线固定在A(3,-1),C(2,-3)两点,点D在直线3x-y+1=0上移动,则点B的轨迹方程为()
A.3x-y-20=0 B.3x-y+10=0
C.3x-y-9=0 D.3x-y-12=0
:A解题思路:设AC的中点为O,即.设B(x,y)关于点O的对称点为(x0,y0),即D(x0,y0),则由3x0-y0+1=0,得3x-y-20=0.
2.由直线y=x+1上的一点向圆(x-3)2+y2=1引切线,则切线长的最小值为()
A.1 B.2
C. -2D.3
:C解题思路:当该点是过圆心向直线引的垂线的交点时,切线长最小.因圆心(3,0)到直线的距离为d==2,所以切线长的最小值是l==.
3.直线y=x+b与曲线x=有且只有一个交点,则b的取值范围是()
A.{b||b|=}
B.{b|-1
C.{b|-1≤b2μ2-8μ+10=2(μ-2)2+2≥2,且f(μ)0,b>0)的左、右焦点分别为F1,F2,A是双曲线渐近线上的一点,AF2F1F2,原点O到直线AF1的距离为|OF1|,则渐近线的斜率为()
A.或- B.或-
C.1或-1 D.或-
:D命题立意:本题考查了双曲线的几何性质的探究,体现了解析几何的数学思想方法的巧妙应用,难度中等.
解题思路:如图如示,不妨设点A是象限内双曲线渐近线y=x上的一点,由AF2F1F2,可得点A的坐标为,又由OBAF1且|OB|=|OF1|,即得sin OF1B=,则tan OF1B=,即可得=, =,得=,由此可得该双曲线渐近线的斜率为或-,故应选D.
4.设F1,F2分别是椭圆+=1(a>b>0)的左、右焦点,与直线y=b相切的F2交椭圆于点E,E恰好是直线EF1与F2的切点,则椭圆的离心率为()
A. B.
C. D.
:C解题思路:由题意可得,EF1F2为直角三角形,且F1EF2=90°,
|F1F2|=2c,|EF2|=b,
由椭圆的定义知|EF1|=2a-b,
又|EF1|2+|EF2|2=|F1F2|2,
即(2a-b)2+b2=(2c)2,整理得b=a,
所以e2===,故e=,故选C.
5.等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,|AB|=4,则C的实轴长为()
A. B.2 C.4 D.8
:C解题思路:由题意得,设等轴双曲线的方程为-=1,又抛物线y2=16x的准线方程为x=-4,代入双曲线的方程得y2=16-a2y=±,所以2=4,解得a=2,所以双曲线的实轴长为2a=4,故选C.
6.抛物线y2=-12x的准线与双曲线-=1的两条渐近线围成的三角形的面积等于()
A. B.3 C. D.3
:B命题立意:本题主要考查抛物线与双曲线的性质等基础知识,意在考查考生的运算能力.
解题思路:依题意得,抛物线y2=-12x的准线方程是x=3,双曲线-=1的渐近线方程是y=±x,直线x=3与直线y=±x的交点坐标是(3,±),因此所求的三角形的面积等于×2×3=3,故选B.
7.若双曲线-=1与椭圆+=1(m>b>0)的离心率之积大于1,则以a,b,m为边长的三角形一定是()
A.等腰三角形 B.直角三角形
C.锐角三角形 D.钝角三角形
:D解题思路:双曲线的离心率为e1=,椭圆的离心率e2=,由题意可知e1·e2>1,即b2(m2-a2-b2)>0,所以m2-a2-b2>0,即m2>a2+b2,由余弦定理可知三角形为钝角三角形,故选D.
8. F1,F2分别是双曲线-=1(a>0,b>0)的左、右焦点,过F1的直线l与双曲线的左、右两支分别交于A,B两点.若ABF2是等边三角形,则该双曲线的离心率为()
A.2 B. C. D.
:B命题立意:本题主要考查了双曲线的定义、标准方程、几何性质以及基本量的计算等基础知识,考查了考生的推理论证能力以及运算求解能力.
解题思路:如图,由双曲线定义得,|BF1|-|BF2|=|AF2|-|AF1|=2a,因为ABF2是正三角形,所以|BF2|=|AF2|=|AB|,因此|AF1|=2a,|AF2|=4a,且F1AF2=120°,在F1AF2中,4c2=4a2+16a2+2×2a×4a×=28a2,所以e=,故选B.
9.已知直线l1:4x-3y+6=0和直线l2:x=-1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是()
A.2 B.3
C. D.
:A解题思路:设抛物线y2=4x上一动点P到直线l1和直线l2的距离分别为d1,d2,根据抛物线的定义可知直线l2:x=-1恰为抛物线的准线,抛物线的焦点为F(1,0),则d2=|PF|,由数形结合可知d1+d2=d1+|PF|取得最小值时,即为点F到l1的距离,利用点到直线的距离公式得最小值为=2,故选A.
10.已知双曲线-=1(a>0,b>0),A,B是双曲线的两个顶点,P是双曲线上的一点,且与点B在双曲线的同一支上,P关于y轴的对称点是Q.若直线AP,BQ的斜率分别是k1,k2,且k1·k2=-,则双曲线的离心率是()
A. B. C. D.
:C命题立意:本题考查双曲线方程及其离心率的求解,考查化简及变形能力,难度中等.
解题思路:设A(0,-a),B(0,a),P(x1,y1),Q(-x1,y1),故k1k2=×=,由于点P在双曲线上,故有-=1,即x=b2=,故k1k2==-=-,故有e===,故选C.
二、填空题
11.已知抛物线y2=4x的焦点为F,过点P(2,0)的直线交抛物线于A(x1,y1)和B(x2,y2)两点,则(1)y1y2=________;(2)三角形ABF面积的最小值是________.
:(1)-8(2)2命题立意:本题主要考查直线与抛物线的位置关系,难度中等.
解题思路:设直线AB的方程为x-2=m(y-0),即x=my+2,联立得y2-4my-8=0.(1)由根与系数的关系知y1y2=-8.(2)三角形ABF的面积为S=|FP||y1-y2|=×1×=≥2.
知识拓展:将ABF分割后进行求解,能有效减少计算量.
12. B1,B2是椭圆短轴的两端点,O为椭圆中心,过左焦点F1作长轴的垂线交椭圆于P,若|F1B2|是|OF1|和|B1B2|的等比中项,则的值是________.
:命题立意:本题考查椭圆的基本性质及等比中项的性质,难度中等.
解题思路:设椭圆方程为+=1(a>b>0),令x=-c,得y2=, |PF1|=. ==,又由|F1B2|2=|OF1|·|B1B2|,得a2=2bc. a4=4b2(a2-b2), (a2-2b2)2=0, a2=2b2, =.
13.已知抛物线C:y2=2px(p>0)的准线为l,过M(1,0)且斜率为的直线与l相交于点A,与C的一个交点为B.若=,则p=________.
:2解题思路:过B作BE垂直于准线l于E,
=, M为AB的中点,
|BM|=|AB|,又斜率为,
BAE=30°, |BE|=|AB|,
|BM|=|BE|, M为抛物线的焦点,
p=2.
14.
如图,椭圆的中心在坐标原点O,顶点分别是A1,A2,B1,B2,焦点分别为F1,F2,延长B1F2与A2B2交于P点,若B1PA2为钝角,则此椭圆的离心率的取值范围为________.
:解题思路:设椭圆的方程为+=1(a>b>0),B1PA2为钝角可转化为,所夹的角为钝角,则(a,-b)·(-c,-b)0, e>或e
一、选择题
1.已知函数f(x)=2x3-x2+m的图象上A点处的切线与直线x-y+3=0的夹角为45°,则A点的横坐标为()
A.0 B.1 C.0或 D.1或
:C命题立意:本题考查导数的应用,难度中等.
解题思路:直线x-y+3=0的倾斜角为45°,
切线的倾斜角为0°或90°,由f′(x)=6x2-x=0可得x=0或x=,故选C.
易错点拨:常见函数的切线的斜率都是存在的,所以倾斜角不会是90°.
2.设函数f(x)=则满足f(x)≤2的x的取值范围是()
A.[-1,2] B.[0,2]
C.[1,+∞) D.[0,+∞)
:D命题立意:本题考查分段函数的相关知识,求解时可分为x≤1和x>1两种情况进行求解,再对所求结果求并集即得最终结果.
解题思路:若x≤1,则21-x≤2,解得0≤x≤1;若x>1,则1-log2 x≤2,解得x>1,综上可知,x≥0.故选D.
3.函数y=x-2sin x,x的大致图象是()
:D解析思路:因为函数为奇函数,所以图象关于原点对称,排除A,B.函数的导数为f′(x)=1-2cos x,由f′(x)=1-2cos x=0,得cos x=,所以x=.当00,函数单调递增,所以当x=时,函数取得极小值.故选D.
4.已知函数f(x)满足:当x≥4时,f(x)=2x;当x0).
(2)设M(m,-p),两切点为A(x1,y1),B(x2,y2).
由x2=4py得y=x2,求导得y′=x.
两条切线方程为y-y1=x1(x-x1),
y-y2=x2(x-x2),
对于方程,代入点M(m,-p)得,
-p-y1=x1(m-x1),又y1=x,
-p-x=x1(m-x1),
整理得x-2mx1-4p2=0.
同理对方程有x-2mx2-4p2=0,
即x1,x2为方程x2-2mx-4p2=0的两根.
x1+x2=2m,x1x2=-4p2.
设直线AB的斜率为k,k===(x1+x2),
所以直线的方程为y-=(x1+x2)(x-x1),展开得:
y=(x1+x2)x-,
将代入得:y=x+p.
直线恒过定点(0,p).
一、选择题
1.已知函数f(x)=2x3-x2+m的图象上A点处的切线与直线x-y+3=0的夹角为45°,则A点的横坐标为()
A.0 B.1 C.0或 D.1或
:C命题立意:本题考查导数的应用,难度中等.
解题思路:直线x-y+3=0的倾斜角为45°,
切线的倾斜角为0°或90°,由f′(x)=6x2-x=0可得x=0或x=,故选C.
易错点拨:常见函数的切线的斜率都是存在的,所以倾斜角不会是90°.
2.设函数f(x)=则满足f(x)≤2的x的取值范围是()
A.[-1,2] B.[0,2]
C.[1,+∞) D.[0,+∞)
:D命题立意:本题考查分段函数的相关知识,求解时可分为x≤1和x>1两种情况进行求解,再对所求结果求并集即得最终结果.
解题思路:若x≤1,则21-x≤2,解得0≤x≤1;若x>1,则1-log2 x≤2,解得x>1,综上可知,x≥0.故选D.
3.函数y=x-2sin x,x的大致图象是()
:D解析思路:因为函数为奇函数,所以图象关于原点对称,排除A,B.函数的导数为f′(x)=1-2cos x,由f′(x)=1-2cos x=0,得cos x=,所以x=.当00,函数单调递增,所以当x=时,函数取得极小值.故选D.
4.已知函数f(x)满足:当x≥4时,f(x)=2x;当x0).
(2)设M(m,-p),两切点为A(x1,y1),B(x2,y2).
由x2=4py得y=x2,求导得y′=x.
两条切线方程为y-y1=x1(x-x1),
y-y2=x2(x-x2),
对于方程,代入点M(m,-p)得,
-p-y1=x1(m-x1),又y1=x,
-p-x=x1(m-x1),
整理得x-2mx1-4p2=0.
同理对方程有x-2mx2-4p2=0,
即x1,x2为方程x2-2mx-4p2=0的两根.
x1+x2=2m,x1x2=-4p2.
设直线AB的斜率为k,k===(x1+x2),
所以直线的方程为y-=(x1+x2)(x-x1),展开得:
y=(x1+x2)x-,
将代入得:y=x+p.
直线恒过定点(0,p).
一、选择题
1.(哈尔滨质检)设全集U=R,A={x|x(x-2)1},所以AB=[0,+∞),A∩B=(1,2],所以A×B=[0,1](2,+∞).
4.已知P={x|x2-x-2≤0},Q={x|log2(x-1)≤1},则(RP)∩Q=()
A.[2,3] B.(-∞,-1][3,+∞)
C.(2,3] D.(-∞,-1](3,+∞)
:C解题思路:因为P={x|-1≤x≤2},Q={x|1
5.已知M={1,2,3,4,5},N=,则M∩N=()
A.{4,5} B.{1,4,5}
C.{3,4,5} D.{1,3,4,5}
:C命题立意:本题考查不等式的解法与交集的意义,难度中等.
解题思路:由≤1得≥0,x0”;
若“pq”为命题,则p,q均为命题;
“三个数a,b,c成等比数列”是“b=”的既不充分也不必要条件.
A.0 B.1 C.2 D.3
:B命题立意:本题主要考查简易逻辑知识,难度较小.
解题思路:对于,全称命题的否定是特称命题,故正确;对于,若pq为,则p,q中至少有一个为,不需要均为,故不正确;对于,若a,b,c成等比数列,则b2=ac,当b0,故不等式等价于a≤,因为x+≥2当且仅当x=,即x=1时取等号,所以不等式成立的条件是a≤1.
综上,命题pq为真,即p真q真时,a的取值范围是(-,1].
12.设等比数列{an}的前n项和为Sn,则“a1>0”是“S3>S2”的________条件.
:充要命题立意:本题考查了等比数列的公式应用及充要条件的判断,难度中等.
解题思路:若a1>0,则a3=a1q2>0,故有S3>S2.若S3>S2,则a3>0,即得a1q2>0,得a1>0, “a1>0”是“S3>S2”的充要条件.
13.已知c>0,且c≠1.设命题p:函数f(x)=logc x为减函数;命题q:当x时,函数g(x)=x+>恒成立.如果p或q为真命题,p且q为命题,则实数c的取值范围为________.
:(1,+∞)命题立意:本题主要考查命题真的判断,在解答本题的过程中,要考虑有p真q或pq真两种情况.
解题思路:由f(x)=logc x为减函数得0恒成立,得2>,解得c>.如果p真q,则01,所以实数c的取值范围为.
14.给出下列四个结论:
命题“x∈R,x2-x>0”的否定是“x∈R,x2-x≤0”;
函数f(x)=x-sin x(xR)有3个零点;
对于任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x>0时,f′(x)>0,g′(x)>0,则xg′(x).
其中正确结论的序号是________.(请写出所有正确结论的序号)
:解题思路:显然正确;由y=x与y=sin x的图象可知,函数f(x)=x-sin x(xR)有1个零点,不正确;对于,由题设知f(x)为奇函数,g(x)为偶函数,又奇函数在对称区间上单调性相同,偶函数在对称区间上单调性相反, 当x0,g′(x)g′(x),正确.
15.(海淀测试)给出下列命题:
“α=β”是“tan α=tan β”的既不充分也不必要条件;
“p为真”是“p且q为真”的必要不充分条件;
“数列{an}为等比数列”是“数列{anan+1}为等比数列”的充分不必要条件;
“a=2”是“f(x)=|x-a|在[2,+∞)上为增函数”的充要条件.
其中真命题的序号是________.
:命题立意:本题考查充分条件、必要条件的判断,难度中等.
解题思路:对于,当α=β=时,不能推出tan α=tan β,反之也不成立,故成立;对于,易得“p为真”是“p且q为真”的必要不充分条件,故成立;对于,当数列{anan+1}是等比数列时不能得出数列{an}为等比数列,故成立;对于,“a=2”是“f(x)=|x-a|在[2,+∞)上为增函数”的充分不必要条件,故不成立.
你好,sino和cos都是正的啊,那个变成5sin就可以说明啊,希望能帮到你
2017年的高考数学试题延续了近几年的命题风格,同时也在题目设置上进行了一些调整。
2017年的高考数学试题延续了近几年的命题风格,同时也在题目设置上进行了一些调整。既注重考查考生对基础知识的掌握程度,符合颁发的《高中数学课程标准》的要求,又在一定程度上加以适度创新,注重考查考生的数学思维和能力。
体现出命题人关注考生学习数学所具备的素养和潜力,倡导用数学的思维进行数学学习,感受数学的思维过程。2017年高考数学试题评析: 加强理性思维考查,突出创新应用。
高考数学必考知识点归纳如下
1、平面向量与三角函数、三角变换及其应用,这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
2、概率和统计,这部分和生活联系比较大,属应用题。
3、考查圆锥曲线的定义和性质,轨迹方程问题、含参问题、定点定值问题、取值范围问题,通过点的坐标运算解决问题。
4、考查运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
5、证明平行或垂直,求角和距离。主要考察对定理的熟悉程度、运用程度。
一、选择题
1.已知函数f(x)=2x3-x2+m的图象上A点处的切线与直线x-y+3=0的夹角为45°,则A点的横坐标为()
A.0 B.1 C.0或 D.1或
:C命题立意:本题考查导数的应用,难度中等.
解题思路:直线x-y+3=0的倾斜角为45°,
切线的倾斜角为0°或90°,由f′(x)=6x2-x=0可得x=0或x=,故选C.
易错点拨:常见函数的切线的斜率都是存在的,所以倾斜角不会是90°.
2.设函数f(x)=则满足f(x)≤2的x的取值范围是()
A.[-1,2] B.[0,2]
C.[1,+∞) D.[0,+∞)
:D命题立意:本题考查分段函数的相关知识,求解时可分为x≤1和x>1两种情况进行求解,再对所求结果求并集即得最终结果.
解题思路:若x≤1,则21-x≤2,解得0≤x≤1;若x>1,则1-log2 x≤2,解得x>1,综上可知,x≥0.故选D.
3.函数y=x-2sin x,x的大致图象是()
:D解析思路:因为函数为奇函数,所以图象关于原点对称,排除A,B.函数的导数为f′(x)=1-2cos x,由f′(x)=1-2cos x=0,得cos x=,所以x=.当00,函数单调递增,所以当x=时,函数取得极小值.故选D.
4.已知函数f(x)满足:当x≥4时,f(x)=2x;当x0).
(2)设M(m,-p),两切点为A(x1,y1),B(x2,y2).
由x2=4py得y=x2,求导得y′=x.
两条切线方程为y-y1=x1(x-x1),
y-y2=x2(x-x2),
对于方程,代入点M(m,-p)得,
-p-y1=x1(m-x1),又y1=x,
-p-x=x1(m-x1),
整理得x-2mx1-4p2=0.
同理对方程有x-2mx2-4p2=0,
即x1,x2为方程x2-2mx-4p2=0的两根.
x1+x2=2m,x1x2=-4p2.
设直线AB的斜率为k,k===(x1+x2),
所以直线的方程为y-=(x1+x2)(x-x1),展开得:
y=(x1+x2)x-,
将代入得:y=x+p.
直线恒过定点(0,p).
一、选择题
1.(哈尔滨质检)设全集U=R,A={x|x(x-2)1},所以AB=[0,+∞),A∩B=(1,2],所以A×B=[0,1](2,+∞).
4.已知P={x|x2-x-2≤0},Q={x|log2(x-1)≤1},则(RP)∩Q=()
A.[2,3] B.(-∞,-1][3,+∞)
C.(2,3] D.(-∞,-1](3,+∞)
:C解题思路:因为P={x|-1≤x≤2},Q={x|1
5.已知M={1,2,3,4,5},N=,则M∩N=()
A.{4,5} B.{1,4,5}
C.{3,4,5} D.{1,3,4,5}
:C命题立意:本题考查不等式的解法与交集的意义,难度中等.
解题思路:由≤1得≥0,x0”;
若“pq”为命题,则p,q均为命题;
“三个数a,b,c成等比数列”是“b=”的既不充分也不必要条件.
A.0 B.1 C.2 D.3
:B命题立意:本题主要考查简易逻辑知识,难度较小.
解题思路:对于,全称命题的否定是特称命题,故正确;对于,若pq为,则p,q中至少有一个为,不需要均为,故不正确;对于,若a,b,c成等比数列,则b2=ac,当b0,故不等式等价于a≤,因为x+≥2当且仅当x=,即x=1时取等号,所以不等式成立的条件是a≤1.
综上,命题pq为真,即p真q真时,a的取值范围是(-,1].
12.设等比数列{an}的前n项和为Sn,则“a1>0”是“S3>S2”的________条件.
:充要命题立意:本题考查了等比数列的公式应用及充要条件的判断,难度中等.
解题思路:若a1>0,则a3=a1q2>0,故有S3>S2.若S3>S2,则a3>0,即得a1q2>0,得a1>0, “a1>0”是“S3>S2”的充要条件.
13.已知c>0,且c≠1.设命题p:函数f(x)=logc x为减函数;命题q:当x时,函数g(x)=x+>恒成立.如果p或q为真命题,p且q为命题,则实数c的取值范围为________.
:(1,+∞)命题立意:本题主要考查命题真的判断,在解答本题的过程中,要考虑有p真q或pq真两种情况.
解题思路:由f(x)=logc x为减函数得0恒成立,得2>,解得c>.如果p真q,则01,所以实数c的取值范围为.
14.给出下列四个结论:
命题“x∈R,x2-x>0”的否定是“x∈R,x2-x≤0”;
函数f(x)=x-sin x(xR)有3个零点;
对于任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x>0时,f′(x)>0,g′(x)>0,则xg′(x).
其中正确结论的序号是________.(请写出所有正确结论的序号)
:解题思路:显然正确;由y=x与y=sin x的图象可知,函数f(x)=x-sin x(xR)有1个零点,不正确;对于,由题设知f(x)为奇函数,g(x)为偶函数,又奇函数在对称区间上单调性相同,偶函数在对称区间上单调性相反, 当x0,g′(x)g′(x),正确.
15.(海淀测试)给出下列命题:
“α=β”是“tan α=tan β”的既不充分也不必要条件;
“p为真”是“p且q为真”的必要不充分条件;
“数列{an}为等比数列”是“数列{anan+1}为等比数列”的充分不必要条件;
“a=2”是“f(x)=|x-a|在[2,+∞)上为增函数”的充要条件.
其中真命题的序号是________.
:命题立意:本题考查充分条件、必要条件的判断,难度中等.
解题思路:对于,当α=β=时,不能推出tan α=tan β,反之也不成立,故成立;对于,易得“p为真”是“p且q为真”的必要不充分条件,故成立;对于,当数列{anan+1}是等比数列时不能得出数列{an}为等比数列,故成立;对于,“a=2”是“f(x)=|x-a|在[2,+∞)上为增函数”的充分不必要条件,故不成立.
你好,sino和cos都是正的啊,那个变成5sin就可以说明啊,希望能帮到你
版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。